Читаем 6a. Электродинамика полностью

*Штрих используется здесь для обозначения запаздывающего поло­жения и времени; не путайте его со штрихом в предыдущей главе, обозначавшим систему отсчета, подвергнутую преобразованиям Лоренца.

*В этом параграфе мы не будем принимать с за единицу.


Глава 27

ЭНЕРГИЯ ПОЛЯ И ЕГО ИМПУЛЬС


§ 1. Локальные законы сохранения

§ 2. Сохранение энергии и электромагнитное поле

§ 3. Плотность энергии и поток энергии в электромагнитном поле

§ 4. Неопределенность энергии поля

§ 5. Примеры потоков энергии

§ 6. Импульс поля


§ 1. Локальные законы сохранения

То, что энергия вещества не всегда сохра­няется, ясно как день. При излучении света объект теряет энергию. Однако потерянную энергию можно представить в какой-то другой форме, скажем, в форме энергии света. Поэтому закон сохранения энергии не полон, если не рассмотреть энергию, связанную со светом, в частности, и с электромагнитным полем вооб­ще. Сейчас мы подправим его, а заодно и закон сохранения импульса с учетом электромагнит­ного поля. Мы, разумеется, не можем обсуждать их порознь, ибо, согласно теории относитель­ности, это различные проявления одного и того же четырехвектора.

С сохранением энергии мы познакомились еще в начале нашего курса; тогда мы просто сказали, что полная энергия в мире остается постоянной. Теперь же мы хотим сделать очень важное обобщение идеи закона сохранения энергии, которое скажет нам нечто о деталях того, как это происходит. Новый закон будет говорить, что если энергия уходит из какой-то области, то это может происходить только за счет ее вытекания через границы рассматрива­емой области. Это утверждение сильнее, чем просто сохранение энергии без подобных огра­ничений.

Чтобы легче понять смысл этого утверждения, посмотрим, как работает закон сохранения заряда. У нас есть плотность тока j и плотность заряда r, а сохранение заряда описывается тем, что если в каком-то месте заряд уменьшается, то оттуда должен происходить отток зарядов. Мы называем это сохранением заряда. Математически закон сохранения записывается в виде



(27.1)

Как следствие этого закона полный заряд всего мира остается постоянным. Заряды никогда не рождались и не уничтожались; в мире как целом нет никакой чистой прибыли зарядов, как нет и никаких потерь. Однако полный заряд мира можно сде­лать постоянным и другим способом. Пусть вблизи точки (1) находится заряд Q1 , а вблизи точки (2), расположенной от нее на некотором расстоянии, никакого заряда нет (фиг. 27.1). Предположим теперь, что с течением времени заряд Q1посте­пенно исчезает, но что одновременно с уменьшением Q1 вблизи точки (2) появляется заряд Q2, причем так, что в любой момент сумма Qtи Q2остается постоянной. Другими словами, в любой промежуточный момент количество заряда, теряемое Q1 , при­бавляется к Q2. При этом в мире полное количество заряда сох­раняется. Хотя это тоже «всемирное» сохранение заряда, мы не будем его называть «локальным» сохранением, ибо для того, чтобы заряд перебрался из точки (1) в точку (2), ему не обяза­тельно появляться где-то в пространстве между этими точками. Локально заряд просто «теряется».

Однако такой «всемирный» закон сохранения встречает в теории относительности большие трудности. Понятие «одно­временно» для точек, разделенных расстоянием, неэквивалентно для разных систем. Два события, происходящие одновременно в одной системе, не будут одновременными в системе, движу­щейся относительно нее. Для «всемирного» сохранения только что описанного типа требуется только одно—чтобы заряд, те­ряемый Q1, одновременно появлялся в Q2. В противном случае будут такие моменты, когда заряд не сохраняется. По-видимому, способа сделать закон сохранения заряда релятивистски инвариантным, не делая его «локальным», не существует.


Фиг. 27.1. Два способа описания сохранения заряда



Суть в том, что требование лоренцевой инвариантности, как оказы­вается, удивительнейшим образом ограничивает возможные законы природы. В современной квантовой теории поля, на­пример, теоретики часто пытаются изменить теорию, допустив то, что мы называем «нелокальным» взаимодействием, когда нечто, находящееся здесь, непосредственно влияет на нечто, находящееся там, но мы всегда наталкиваемся на трудности, связанные с принципами относительности.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература