Читаем 6a. Электродинамика полностью

Потенциал Юкавы благодаря экспоненциальному множителю угасает быстрее, чем 1/r. Как это видно из фиг. 28.6, для рас­стояний, превышающих 1/m, потенциал, а следовательно, и ядерные силы приближаются к нулю гораздо быстрее, чем 1/r. Поэтому «радиус действия» ядерных сил гораздо меньше «радиуса действия» электростатических. Экспериментально дока­зано, что ядерные силы не простираются на расстояния свыше 10-13 см, поэтому

m»1015 м-1.



Фиг. 28.6. Сравнение потенциала Юкавы. е-mr/r с кулоновым потен­циалом 1/r.


И, наконец, давайте рассмотрим волновое решение уравне­ния (28.17). Если мы подставим в него


то получим

Связывая теперь частоту с энергией, а волновое число с импуль­сом, как это делалось в конце гл. 34 (вып. 3), мы найдем соот­ношение


которое говорит, что масса «фотона» Юкавы равна mh/с. Если в качестве m взять величину ~1015м-1, которую дает наблюдаемый радиус действия ядерных сил, то масса оказывается равной 3·10-25 г, или 170 Мэв, что приблизительно равно наблюдаемой массе p-мезона. Таким образом, по аналогии с электродинами­кой мы бы сказали, что p-мезон — это «фотон» поля ядерных сил. Однако теперь мы распространили идеи электродинамики в такую область, где они на самом деле могут оказаться и не­верными. Мы вышли далеко за рамки электродинамики и очутились перед проблемой ядерных сил.

* Мы пользуемся такими обозначениями x=dx/dt, x=d2x/dt2, x=d3x/dt3 и т. д.


Глава 29

ДВИЖЕНИЕ ЗАРЯДОВ В ЭЛЕКТРИЧЕСКОМ И МАГНИТНОМ ПОЛЯХ


§ 1. Движение в однородных электрическом я магнитном полях

§ 2. Анализатор импульсов

§ 3. Электростатиче­ская линза

§ 4. Магнитная линза

§ 5. Электронный микроскоп

§ 6. Стабилизирую­щие поля ускори­телей

§ 7. Фокусировка чередующимся градиентом

§ 8. Движение в скрещенных электрическом и магнитном полях

Повторить: гл. 30 (вып. 3) «Дифракция».


§ 1. Движение в однородных электрическом и магнитном полях

Мы теперь перейдем к описанию в общих чер­тах движения зарядов в различных условиях. Наиболее интересные явления возникают тогда, когда зарядов движется много и все они взаимо­действуют друг с другом. Так обстоит дело, когда электромагнитные волны проходят через кусок вещества или плазму; тогда легионы за­рядов взаимодействуют друг с другом. Но это очень сложная картина. Позднее мы поговорим и о таких проблемах; пока же мы обсудим не­сравненно более простую задачу о движении отдельного заряда в заданном поле. При этом можно пренебречь всеми другими зарядами, за исключением, разумеется, тех зарядов и токов, которые создают предполагаемое нами поле.

Начать, по-видимому, нужно с движения частицы в однородном электрическом поле. Движение при небольших скоростях не пред­ставляет особенного интереса — это просто рав­номерно ускоренное движение в направлении поля. А вот когда частица, набрав достаточно энергии, превращается в релятивистскую, дви­жение ее становится более сложным. Решение для этого случая я оставляю вам — потруди­тесь и отыщите его сами.

Мы же рассмотрим движение в однородном магнитном поле, когда электрического поля нет. Эту задачу мы уже решали. Одним из ре­шений было движение частиц по окружности. Магнитная сила


qv X В всегда действует под прямым углом к направлению движения, так что производная dp/dt перпендикулярна р и равна по величине vp/R, где R — радиус окружности, т. е.



Фиг. 29.1. Движение частицы в однородном магнитном поле.


Таким образом, радиус круговой орбиты равен

(29.1)

Это одно из возможных движений. Если движущаяся час­тица имеет только одну составляющую в направлении поля, то она не изменяется, ибо у магнитной силы отсутствует компо­нента в направлении поля. Общее же движение частицы в од­нородном магнитном поле — это движение с постоянной ско­ростью в направлении В и круговое движение под прямым углом к В, т. е. движение по цилиндрической спирали (фиг. 29.1). Радиус спирали определяется равенством (29.1) с заменой р на ркомпоненту импульса, перпендикулярную к направ­лению поля.

§ 2. Анализатор импульсов

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература