Читаем 9. Квантовая механика II полностью

Если частица пребывает в одном базисном состоянии, то ампли­туда пребывания в другом базисном состоянии равна нулю. С помощью подходящей нормировки можно так определить амплитуду j>, чтобы она была равна единице. Оба эти условия содержатся в (14.36). Теперь мы хотим понять, как надо видоизменить это соотношение, когда пользуются базисными состояниями частицы на прямой. Если известно, что частица пребывает в одном из базисных состояний |х>, то какова ампли­туда того, что она пребывает в другом базисном состоянии |x'>? Если х и х' — две разные точки прямой, то амплитуда <x|х'>, конечно, есть нуль, что согласуется с (14.36). Но когда х и х' равны, то амплитуда <x|х' > не будет равна единице из-за той же старой проблемы нормировки. Чтобы увидеть, как надо все подправить, вернемся к (14.19) и применим это уравнение к частному случаю, когда состояние |j> — просто-напросто базисное состояние |х'>. Тогда получится

Далее, амплитуда это как раз то, что мы назвали функцией y (х). Подобно атому а амплитуда <x'|y>, по­скольку она относится к тому же состоянию y, является той же функцией переменной х', а именно y (х'). Поэтому (14,37) можно переписать так;

Уравнение должно выполняться для любого состояния y и, стало быть, для любой функции y (х). Это требование обязано полностью определить природу амплитуды <x|х'), которая, конечно, есть попросту функция, зависящая от х и х'.

Наша задача теперь состоит в том, чтобы отыскать функцию f(х, х'), которая после умножения на y (х)и интегрирования по всем х даст как раз величину y (х'). Но оказывается, что не существует математической функции, которая это умеет делать! По крайней мере не существует ничего похожего на то, что мы обычно имеем в виду под словом «функция».

Выберем какое-нибудь значение х', например 0, и опреде­лим амплитуду <0|x> как некую функцию х, скажем f(х). Тогда (14.38) обратится в

Какого же вида функция f(х)могла бы удовлетворить такому уравнению? Раз интеграл не должен зависеть от того, какие значения принимает y (х)при х, отличных от нуля, то ясно, что f(х)должна быть равна нулю для всех значений х, кроме нуля. Но если f(х)всюду равна нулю, то интеграл будет тоже равен нулю, и уравнение (14.39) не удастся удовлетворить. Возникает невозможная ситуация: нам нужно, чтобы функция была нулем всюду, кроме одной точки, и давала все же конечный интеграл. Что ж, раз мы не в состоянии сыскать функцию, которая так поступает, то простейший выход — просто сказать, что функция f(х) определяется уравнением (14.39). И именно f(х) — такая функция, которая делает (14.39) правильным. Функция, которая умеет это делать, впервые была изобретена Дираком и носит его имя. Мы обозначаем ее d (х). Все, что о ней утверждается — это что функция d(х)обладает странным свойством: если ее подставить вместо f(х)в (14.39), то интеграл выберет то значе­ние, которое y (х)принимает при х=0; и поскольку интеграл не должен зависеть от y (х)при х, отличных от нуля, то функция d(х)должна быть нулем всюду, кроме х=0. Словом, мы пишем

<0|x>=d(x), (14.40)

где d (х)определяется соотношением

Посмотрите, что выйдет, если вместо y в (14.41) поставить частную функцию «1». Тогда получится

Иначе говоря, функция d(х)обладает тем свойством, что всюду, кроме х=0, она равна нулю, но интеграл от нее конечен и равен единице. Приходится вообразить, что функция d(х) обладает в одной точке такой фантастической бесконечностью, что полная площадь оказывается равной единице.

Как представить себе, на что похожа d-функция Дирака? Один из способов — вообразить последовательность прямо­угольников (или другую, какую хотите функцию с пиком), которая становится все уже и уже и все выше и выше, сохраняя все время единичную площадь, как показано на фиг. 14.2.

Фиг. 14.2. Последователь­ность функций, ограничиваю­щих единичную площадь, вид которых все сильнее и сильнее напоминает d-функцию.

Перейти на страницу:

Похожие книги