Э. Ферми и Л. Сциларду понадобилось всего несколько недель, чтобы окончательно установить следующие чрезвычайно важные положения. Атом урана можно расщепить на две части; при этом освобождается огромное количество энергии; в процессе расщепления выделяются нейтроны, которые, в свою очередь, могут расщепить другие атомы урана и вызвать цепную ядерную реакцию.
Бор, находившийся в США с января по май 1939 г., много сделал в этот период для быстрой разработки теории, которая впоследствии привела к доказательству особой способности урана-235 и плутония к расщеплению. Его работы положили начало интенсивной разработке вопросов ядерной энергетики.
В энергетическом отношении ядерные реакции могут быть невыгодными, если для их осуществления необходимы затраты энергии, и выгодными, если выделяется значительное количество энергии. При делении ядра урана продукты деления обладают меньшей внутренней энергией, чем первоначальное ядро; вследствие этого продукты деления (осколки) приобретают большую кинетическую энергию (т. е. энергию движения), которая в конечном счете превращается в тепло. Однако при единичных актах деления эта выделенная энергия будет все же незаметной. Нельзя получить особого выигрыша, даже если усиливать поток нейтронов, облучающих уран. Необходимо, чтобы реакция дальше шла самостоятельно. И это оказалось для урана возможным именно потому, что при делении каждого ядра урана получаются новые нейтроны: надо было только обеспечить необходимые условия, чтобы эти нейтроны в свою очередь, могли вызывать деление других ядер урана, т. е. чтобы ядерная реакция стала цепной.
Представим себе лунку, через которую катится шар. Если скорость движения шара невелика, он остановится в лунке, если велика - проскочит ее. Нечто подобное происходит с нейтронами: медленные нейтроны попадают в атомные ядра лучше, чем быстрые. Попадая в ядро, медленные и быстрые нейтроны дают разные эффекты, поскольку их энергия различна. Ядро урана обладает известной устойчивостью, и, чтобы деление произошло, нужно сообщить ядру некоторую "энергию активации". Так, чтобы выстрелить из ружья, надо затратить некоторую "энергию активации" на спуск курка, незначительную по сравнению с энергией выстрела, но все же необходимую. Оказалось, что уран-238 может быть активизирован только быстрыми нейтронами, теми, которые обладают кинетической энергией не меньше миллиона электроновольт. Такие нейтроны при делении урана получаются, но для них ядро не является мишенью достаточно "эффективного сечения" - оно мало, и поэтому цепная реакция не происходит. А, например, изотоп урана-235 обладает свойством делиться при попадании нейтронов любых энергий, как медленных, так и быстрых. Но его слишком мало в естественной смеси изотопов. Из этого положения есть выход. Надо подготовить препарат из чистого изотопа урана-235. Тогда в нем при определенных критических размерах, зависящих от средней длины пробега нейтрона, возникает лавинная цепная реакция, что даст взрыв колоссальной силы. Или же надо внести в естественную смесь изотопов урана замедлители нейтронов (например, блоки из графита), которые замедляют скорость движения нейтронов таким образом, что обеспечивают возможность деления. Тогда цепная реакция оказывается возможной, но выделение энергии делается постепенным и легко управляемым.
Заметим, что ядерная реакция деления урана весьма эффективна и далеко превосходит самые бурные химические реакции. Сравним атом урана и молекулу взрывчатого вещества - тринитротолуола (тротила). При распаде молекулы тротила выделяется 10 электроновольт энергии, а при распаде ядра урана - 200 млн. электроновольт, т. е. в 20 млн. раз больше!
Как устроен урановый котел (так в то время зазывали ядерный реактор)? Цилиндры из натурального урана, содержащего в основном изотоп урана-238 и только примерно 0,7% изотопа 235, в алюминиевых оболочках размещены между блоками из графита высокой чистоты. Размер котла и его устройство таковы, что обеспечивают возможность цепной ядерной реакции. Нейтроны, излучаемые изотопом урана-235, проникают в некоторые ядра урана; при этом возникают новые быстрые нейтроны, которые, замедляясь графитом, сталкиваются с ядрами урана в соседнем урановом цилиндре и вызывают новое целение. При каждом делении образуется в среднем два-три нейтрона. Часть их поглощается ураном, и котел рассчитывается так, чтобы обеспечить необходимый для поддержания реакции деления прирост нейтронов. Число новых нейтронов, вызывающих деление ядер, должно быть больше числа старых нейтронов, бывших причиной их возникновения: иначе цепная реакция прекратится. Имеющиеся в натуральном уране и графите примеси тоже поглощают нейтроны, поэтому необходимо добиться высокой химической чистоты как урана, так и замедлителя - графита.