Читаем А что, если?.. полностью

В соответствии с ранее полученными данными, ягодицы с характеристиками, приближенными к реальным, снижают собственную частоту колебаний позвоночника с ~12 до 5,5 Гц.

Последняя фраза не связана напрямую с искусственными неровностями, но я все равно решил включить эту цитату.

Обычный, небольшой «лежачий полицейский» вас не убьет

Искусственные неровности делают для того, чтобы заставить водителя притормозить. Если переехать через стандартную искусственную неровность на скорости 8 км/ч, вы просто легонько подпрыгнете, но на скорости 35 км/ч испытаете уже ощутимый толчок. Исходя из этого, можно предположить, что при переезде на скорости 140 км/ч последует пропорционально более сильный толчок, но, скорее всего, это не так.

Как показывают цитаты из медицинских журналов, иногда люди действительно получают повреждения, столкнувшись с неровностью на дороге.

Однако почти все эти несчастья происходят с очень специфической категорией пассажиров – с теми, кто сидит на жестком заднем сиденье в хвосте автобуса, идущего по плохой дороге.

Когда вы едете на машине, две вещи защищают вас от неровностей на дороге – шины и подвеска. Неважно, с какой скоростью вы наедете на «лежачего полицейского»: если он не настолько высокий, чтобы зацепить раму автомобиля, значительная часть толчка будет погашена за счет двух этих систем и вы не получите повреждений.

Однако это совершенно не обязательно пойдет на пользу этим системам. Шины могут погасить удар, но при этом лопнуть. Если неровность достаточно высока, чтобы ударить по ободу колеса, она может навсегда испортить много важных деталей машины.

Типичный «лежачий полицейский» возвышается над дорогой на 7–10 см. Это примерно равно толщине средней шины (то есть расстоянию от обода до асфальта)[100]. Значит, что, если колесо врежется в стандартную искусственную неровность, обод колеса ее не коснется – шина просто будет сжата.

Типичный легковой автомобиль можно разогнать до 200 км/ч. Если врезаться в искусственную неровность на такой скорости, вы, скорее всего, так или иначе потеряете управление и разобьетесь[101]. Однако сам удар, скорее всего, не будет фатальным.

Но если врезаться на скорости в более высокую искусственную неровность, ваша машина так легко не отделается.

Как быстро нужно ехать, чтобы гарантированно погибнуть?

Давайте прикинем, что случится, если машина едет со скоростью быстрее максимально возможной. Хотя скорость обычного седана в среднем ограничена 200 км/ч, самые быстрые спорткары могут разгоняться до 400 км/ч.

У большинства современных легковых машин имеются какие-либо электронные устройства, контролирующие обороты двигателя и искусственно ограничивающие скорость автомобиля, однако основным естественным ограничителем является сопротивление воздуха. Оно возрастает пропорционально квадрату скорости, и в какой-то момент мощности двигателя автомобиля оказывается недостаточно, чтобы ехать сквозь воздух еще быстрее.

Если бы мы действительно заставили седан ехать быстрее его максимальной скорости – например, использовав магический ускоритель, оставшийся у нас от игры в релятивистский бейсбол, – то «лежачий полицейский» был бы наименьшей из наших проблем.

Машины производят подъемную силу. Воздух, обтекающий машину, воздействует на нее целым набором разнообразных сил.

Откуда взялись все эти стрелочки?

Подъемная сила не слишком значительна при тех скоростях, которые развивают обычные машины на обычных шоссе, но на больших скоростях эта сила становится все более заметной.

У болидов «Формулы-1», снабженных аэродинамическими антикрыльями, эта сила давит сверху вниз, прижимая машину к трассе. В случае обычного седана она будет, наоборот, поднимать автомобиль.

Поклонники кузовных гонок NASCAR часто говорят о «скорости отрыва» (около 320 км/ч), когда машину заносит и она начинает крутиться на трассе. В других видах автогонок происходили драматические аварии, когда машина переворачивалась назад по ходу движения: аэродинамические обвесы не срабатывали так, как планировалось.

В общем, при скорости в 250–500 км/ч типичный седан оторвется от земли, перевернется и разобьется… прежде чем вы доберетесь до первого «лежачего полицейского».

Срочная новость: ребенок и неопознанное существо в велосипедной корзинке погибли в аварии

А что, если бы вы не дали машине взлететь? Сила ветра на такой скорости все равно сорвала бы капот, боковые панели и двери. На еще большей скорости автомобиль развалился бы на части, а то и сгорел, как космический аппарат на входе в атмосферу.

Каково же ограничение скорости?
Перейти на страницу:

Похожие книги

Метафизика
Метафизика

Аристотель (384–322 до н. э.) – один из величайших мыслителей Античности, ученик Платона и воспитатель Александра Македонского, основатель школы перипатетиков, основоположник формальной логики, ученый-естествоиспытатель, оказавший значительное влияние на развитие западноевропейской философии и науки.Представленная в этой книге «Метафизика» – одно из главных произведений Аристотеля. В нем великий философ впервые ввел термин «теология» – «первая философия», которая изучает «начала и причины всего сущего», подверг критике учение Платона об идеях и создал теорию общих понятий. «Метафизика» Аристотеля входит в золотой фонд мировой философской мысли, и по ней в течение многих веков учились мудрости целые поколения европейцев.

Аристотель , Аристотель , Вильгельм Вундт , Лалла Жемчужная

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Современная русская и зарубежная проза / Прочее / Античная литература / Современная проза
История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Сталин и Рузвельт. Великое партнерство
Сталин и Рузвельт. Великое партнерство

Эта книга – наиболее полное на сегодняшний день исследование взаимоотношений двух ключевых персоналий Второй мировой войны – И.В. Сталина и президента США Ф.Д. Рузвельта. Она о том, как принимались стратегические решения глобального масштаба. О том, как два неординарных человека, преодолев предрассудки, сумели изменить ход всей человеческой истории.Среди многих открытий автора – ранее неизвестные подробности бесед двух мировых лидеров «на полях» Тегеранской и Ялтинской конференций. В этих беседах и в личной переписке, фрагменты которой приводит С. Батлер, Сталин и Рузвельт обсуждали послевоенное устройство мира, кардинально отличающееся от привычного нам теперь. Оно вполне могло бы стать реальностью, если бы не безвременная кончина американского президента. Не обошла вниманием С. Батлер и непростые взаимоотношения двух лидеров с третьим участником «Большой тройки» – премьер-министром Великобритании У. Черчиллем.

Сьюзен Батлер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Образование и наука