Девушка, жившая к востоку от того места, где обитал наш сердцеед, сказала ему как-то раз на прощание.
Вести. Я так счастлива, милый, что ты навещаешь меня в среднем 9 дней из 10.
На следующий вечер девушка, жившая к западу от дома нашего героя, сердито упрекнула его.
Вести. Почему ты являешься ко мне в среднем только раз в десять дней?
Необъяснимое на первый взгляд предпочтение парня к поездам восточного направления напоминает парадокс с лифтами. Хотя поезда восточного и западного направлений идут с интервалами в 10 мин, расписание составлено так, что поезд западного направления прибывает и отправляется на 1 мин позже, чем ближайший поезд восточного направления.
Чтобы попасть на поезд, идущий на запад, парень должен ел на станции в течение одного из минутных интервалов, отмеченных на циферблате темными полосами.
Чтобы попасть на поезд, идущий на восток, он должен прибыть на станцию в течение любого из девятиминутных интервалов, заключенных между темными полосами.
Вероятность поехать на запад составляет 1/10, вероятность отправиться на восток составляет 9/10.
В этом парадоксе время ожидания между поездами задано расписанием. В последовательности случайных событий «среднее время ожидания» между событиями мы получим, просуммировав времена ожидания и разделив полученную сумму на n. Например, среднее время ожидания для поезда, идущего на восток, в нашем рассказе составляет 41/2 мин, а среднее время ожидания для поезда, идущего на запад, — всего 1/2 мин.
С временами ожидания связаны и многие другие парадоксы. Возможно, вам понравится следующий.
Если вы бросаете монету, то среднее время ожидания «орла» (или «решки») равно 2 бросаниям. Это означает, что, взяв перечень исходов длинной серии бросаний монеты и подсчитав времена ожидания, отделяющие выпадение одного «орла» от выпадения следующего «орла», вы получите среднее «расстояние» между «орлами», равное 2 бросаниям (если серия начинается не с «орла», то длина серии «решек» до выпадения первого «орла» в расчет не принимается).
Предположим, что на длинном листе бумаги сверху вниз выписаны исходы длинной серии бросаний монеты. Выберите наугад зазор между двумя последовательными бросаниями (например, зажмурьте глаза и проведите по листу горизонтальную черту). Найдите ближайший к проведенной черте «орел» сверху и снизу и подсчитайте число испытаний, отделяющих один «орел» от другого. Повторите эту операцию многократно. Чему будет равно среднее расстояние между «орлами»?
Интуитивно кажется, что «орлы» должны быть в среднем разделены двумя бросаниями. В действительности в среднем их разделяют три бросания.
Причина та же, по которой любвеобильный парень обычно садился в поезд, идущий на восток. Одни серии испытаний между последовательными «орлами» короткие, другие — длинные. Случайно проведенная линия аналогична случайному выбору момента прибытия парня на станцию. Попасть в более длинную серию вероятнее, чем в более короткую.
Приведем теперь простое доказательство того, что три испытания — действительно правильный ответ на вопрос задачи. Монеты «не помнят» исходов предыдущих бросаний, поэтому, где бы вы ни провели черту, среднее время ожидания до выпадения следующего «орла» должно быть равно 2 бросаниям. То же соображение применимо и к среднему времени ожидания, если мы «обратим» всю серию испытаний и будем считать времена ожидания не вперед, а назад. Следовательно, «средняя длина свободного пробега» между «орлами» равна 2х2, то есть 4, если мы будем считать и те бросания, при которых выпали сами «орлы». А так как мы условились понимать под временем ожидания длину серии испытаний, включающую выпадение следующего «орла», но не включающую выпадение предыдущего «орла», то средняя длина свободного пробега равна 4–1 = 3 бросаниям.