Функция радиального распределения — это как раз то, что нужно для учёта трёхмерной природы атома. Чтобы по мере увеличения r
учесть все направления поиска электрона, необходимо добавить множитель 4π∙r2. Функция радиального распределения задаёт вероятность обнаружить электрон на расстоянии r от ядра для всех направлений. В главе 5 говорилось, что, согласно интерпретации волновой функции Бора, вероятность обнаружить частицу в некоторой области пространства пропорциональна квадрату абсолютного значения волновой функции. Сейчас мы хотим найти вероятность обнаружения электрона в тонком сферическом слое радиусом r. Это и будет функция радиального распределения, задаваемая формулой 4π∙r2∙|Ψ|2. Вертикальные линии, как и прежде, обозначают абсолютную величину. Для функций, с которыми мы имеем дело, потребуется лишь возвести в квадрат волновую функцию.
Рис. 10.4.
График функции радиального распределения для 1s-орбитали в зависимости от расстояния r до протона. Функция радиального распределения — это вероятность обнаружить электрон в тонком сферическом слое на расстоянии r от протона. Функция радиального распределения учитывает тот факт, что электрон может быть найден в любом направлении от протона. Расстояние r измеряется в ангстремах (1 Å = 10−10 м)
На рис. 10.4 показана функция радиального распределения для 1s
-состояния атома водорода.Расстояние, на котором достигается максимальная вероятность, — это не центр атома, поскольку объём сферического слоя стремится к нулю, когда r
обращается в нуль. Вертикальная линия показывает положение максимума распределения вероятности, который находится на отметке r = 0,529 Å. Это значение представляет особый интерес. В старой боровской квантовой теории атома водорода электрон в 1s-состоянии движется по круговой орбите радиусом 0,529 Å. Это расстояние называется радиусом Бора и обозначается a0. Корректное квантовомеханическое описание атома водорода гласит, что электрон — это волна амплитуды вероятности с расстоянием максимальной вероятности, равным радиусу Бора a0. Это не случайное совпадение. Радиус Бора в действительности является фундаментальной постоянной. Он определяется формулойa
0=ε0∙h2/π∙μ∙e2,где все параметры те же, что и в выражении для постоянной Ридберга через фундаментальные постоянные. На самом деле энергетические уровни атома водорода можно выразить через радиус Бора следующим образом:
E
n=−e2/8π∙ε0∙a0∙n2.На рис. 10.5 и 10.6 представлены графики волновых функций (вверху) и функций радиального распределения (внизу) для орбиталей 2s
и 3s. Волновая функция для 2s-орбитали имеет узел, то есть место, где она обращается в нуль. Об узлах мы говорили в связи с волновой функцией частицы в ящике (см. рис. 8.4). Вблизи узла вероятность обнаружить частицу, в данном случае электрон, равна нулю. Волновая функция состояния 2s начинается с положительного значения, пересекает нулевое значение в узле, расположенном на расстоянии, равном удвоенному радиусу Бора (2а0), а затем становится отрицательной. Далее волновая функция спадает до нуля. На расстоянии 8 Å значение волновой функции уже очень мало́.
Рис. 10.5.
Волновая функция (вверху) и функция радиального распределения (внизу) для 2s-орбитали атома водорода в зависимости от расстояния r до протона. Волновая функция начинается с положительного значения, проходит через узел чуть дальше точки 1 Å (2a0) и затем спадает до нуля. Функция радиального распределения демонстрирует максимум вероятности обнаружения электрона на отметке 2,8 Å, причём наиболее вероятно найти его в интервале от 2 до 4 Å (см. рис. 10.2). Расстояние r измеряется в ангстремах (1 Å = 10−10 м)