Читаем Агрохимия полностью

Фосфор как элемент был выделен из мочи гамбургским аптекарем Геннингом Брандтом в 1669 г. Первое упоминание о его значении для растений относится к 1795 г. (Дендональд). Вскоре швейцарский естествоиспытатель Соссюр обнаружил фосфат кальция в золе всех проанализированных им растений. Это и дало основание предположить, что растения не могут существовать без фосфора. Впоследствии было установлено, что окисленные соединения фосфора, безусловно, необходимы всем живым организмам. Без него не может существовать ни одна живая клетка.

Потребление фосфора растениями в несколько раз меньше, чем азота. Содержание его составляет 0,2—1,0 % от массы сухого вещества растений. Распределение фосфора в растениях показывает, что он является спутником азота: его много там, где много азота. Оба эти элемента накапливаются больше всего в репродуктивных органах и в тех органах, где интенсивно идут процессы синтеза органических веществ. Наличие связи между фосфором и азотом в растениях определяет довольно устойчивое соотношение их в урожае (табл. 57).

57. Среднее соотношение основных элементов питания в урожае растений, %
КультураNp2osК,0
Озимая пшеница, зерно1003260
Сахарная свекла, корни10029106
Картофель, клубни10030140
Клевер луговой, сено1003190

Для самой разнообразной продукции (зерно, корни, клубни, сено) соотношение между азотом и фосфором примерно составля-

ет 1 :0,3, тогда как между азотом и калием оно сильно колеблется в зависимости от вида растений: от 1 :0,6 до 1 : 1,4. Можно считать, что количество Р205 в растениях в среднем составляет 1/3 наличия в них азота. В вегетационных опытах, создавая в питательных средах различные соотношения между азотом и фосфором, можно получить растения с различным соотношением этих элементов. Однако в полевых условиях такое соотношение достаточно стабильно, так как почва является мощным регулятором питания растений.

Фосфор в растениях содержится в минеральных и органических соединениях; из них на минеральные соединения приходится около 5—15 %, на органические — 85—95 %. Минеральные формы представлены в основном кальциевыми, калиевыми, магниевыми и аммонийными солями ортофосфорной кислоты.

Наиболее важную роль в жизни растений играет фосфор, входящий в состав органических соединений: нуклеиновых кислот, нуклеопротеидов и фосфатопротеидов, аденозинфосфатов, сахарофосфатов, фосфатидов, фитина.

Среди них на первое место, пожалуй, следует поставить нуклеиновые кислоты (РНК и ДНК) и аденозинфосфаты (АТФ и АДФ), которые участвуют в самых важных процессах жизнедеятельности растительного организма: синтезе белков, передаче наследственных свойств и энергетическом обмене.

Нуклеиновые кислоты — рибонуклеиновая (РНК) и дезоксирибонуклеиновая (ДНК) — представляют собой высокополимерные соединения коллоидного характера. Это гигантские молекулы, имеющие форму спиральных нитей (25 А в диаметре) и состоящие из множества комбинаций нуклеотидов. Нуклеотиды имеют в своем составе вещества трех типов: азотистые основания, сахар и фосфорную кислоту. Углеводный компонент в РНК представлен рибозой, а в ДНК — дезоксирибозой. Они различаются и по составу азотистых оснований.

Взаимодействуя между собой в различных комбинациях, эти три компонента дают начало нуклеотидам, из которых и строятся молекулы нуклеиновых кислот. В каждую нуклеиновую кислоту входят многие тысячи нуклеотидов, соединяющихся между собой остатками молекул фосфорной кислоты. Комбинации нуклеотидов в нуклеиновых кислотах являются своеобразным шифром, которым записаны наследственные свойства организма, передающиеся потомству. Бесчисленное количество этих комбинаций и создает то огромное разнообразие видов живых существ в окружающей нас природе.

ДНК является механизмом записи и передачи наследственности в целом, а РНК непосредственно участвует в синтезе белковых веществ, характерных для определенного вида растений. Содержание Р205 в нуклеиновых кислотах составляет около 20 %. Эти кислоты встречаются во всех тканях и органах растений, в любой растительной клетке. В листьях и стеблях большинства растений нуклеиновые кислоты составляют 0,1 —1,0 % сухой массы, в молодых листьях и в точках роста побегов их больше, чем в старых листьях или стеблях. Особенно высоким содержанием нуклеиновых кислот отличаются пыльца, зародыши семян, кончики корней.

В растениях нуклеиновые кислоты часто образуют комплексы с белками — нуклеинопротеиды (важнейшее вещество клеточных ядер).

Перейти на страницу:

Похожие книги

Запутанная жизнь. Как грибы меняют мир, наше сознание и наше будущее
Запутанная жизнь. Как грибы меняют мир, наше сознание и наше будущее

Под словом «гриб» мы обыкновенно имеем в виду плодовое тело гриба, хотя оно по сути то же, что яблоко на дереве. Большинство грибов живут тайной – подземной – жизнью, и они составляют «разношерстную» группу организмов, которая поддерживает почти все прочие живые системы. Это ключ к пониманию планеты, на которой мы живем, а также наших чувств, мыслей и поведения.Талантливый молодой биолог Мерлин Шелдрейк переворачивает мир с ног на голову: он приглашает читателя взглянуть на него с позиции дрожжей, псилоцибиновых грибов, грибов-паразитов и паутины мицелия, которая простирается на многие километры под поверхностью земли (что делает грибы самыми большими живыми организмами на планете). Открывающаяся грибная сущность заставляет пересмотреть наши взгляды на индивидуальность и разум, ведь грибы, как выясняется, – повелители метаболизма, создатели почв и ключевые игроки во множестве естественных процессов. Они способны изменять наше сознание, врачевать тела и даже обратить нависшую над нами экологическую катастрофу. Эти организмы переворачивают наше понимание самой жизни на Земле.В формате PDF A4 сохранен издательский макет.

Мерлин Шелдрейк

Ботаника / Зарубежная образовательная литература / Образование и наука
100 великих тайн из жизни растений
100 великих тайн из жизни растений

Ученые считают, что растения наделены чувствами, интеллектом, обладают памятью, чувством времени, могут различать цвета и общаться между собой или предостерегать друг друга. Они умеют распознавать угрозу, дрожат от страха, могут звать на помощь; способны взаимодействовать друг с другом и другими живыми существами на расстоянии; различают настроение и намерения людей; излучение, испускаемое ими, может быть зафиксировано датчиками. Они не могут убежать в случае опасности. Им приходится быть внимательнее и следить за тем, что происходит вокруг них. Растения, как оказывается, реагируют на людей, на шум и другие явления, а вот каким образом — это остается загадкой. Никому еще не удалось приблизиться к ее разгадке.Об этом и многом другом рассказывает очередная книга серии.

Николай Николаевич Непомнящий

Ботаника / Научно-популярная литература / Образование и наука