Переносчиками могут быть белковые глобулы диаметром, превышающим толщину клеточной мембраны. В этом случае движения глобулы вокруг своей оси обеспечивают перенос ионов с наружной стороны мембраны во внутреннюю. Примером такого переноса ионов может служить ионный насос, представленный транспортной калиево-натриевой АТФ-азой. Свое название АТФ-азы получили в связи с присущей им способностью расщеплять адено-зинтрифосфорную кислоту (АТФ). Освобождаемая энергия используется для транспорта веществ, а транспортная АТФ-аза обратимо фосфорилируется. Молекулярная масса транспортных АТФ-аз около 200 000—700 000. Параллельно с фосфорилированием и дефосфорилированием транспортной АТФ-азы осуществляются связывание и освобождение иона и одновременно происходят конформационные изменения молекулы АТФ-азы, позволяющие осуществлять перенос иона внутрь клетки. Активный участок потребляет метаболическую энергию, и к обменному участку присоединяется катион М+. В активированном насосе обменный участок изменяет свою ориентацию и оказывается обращенным к внешней среде. В этих новых условиях изменяется сила его электрического поля, так как теперь с ним предпочтительнее связывается катион С+. Релаксация — пере-
Рис. 15. Гипотетический механизм элек-тронейтрального ионообменного насоса, позволяющий осуществить перенос ионов против электрохимического градиента:
ход из активированного состояния в неактивированное. Восстанавливается первоначальная ориентация насоса: обменный участок вместе с катионом С+ оказывается обращенным к внутреннему отсеку. Здесь с обменным участком предпочтительно связывается М+, а С+ высвобождается (рис. 15).
Активный транспорт ионов в клетки осуществляется за счет специальных ферментов АТФ-аз по механизму, называемому
Задачей ионного насоса является поддержание внутри клетки постоянного ионного состава, несмотря на расход в результате реакций обмена и утечку в результате диффузии.
Ответственные за функционирование калий-натриевого насоса — транспортные АТФ-азы, требующие присутствия Mg2+ и дополнительно активируемые ионами К+ и Na+, — в животных клетках были открыты в 1957 г. Для растительных клеток первое сообщение о наличии калий-натриевой АТФ-азы было опубликовано в 1964 г. В настоящее время существование растительной транспортной калиево-натриевой АТФ-азы доказано. Этот специфический фермент осуществляет выкачивание из клеток ионов Na+ и вхождение ионов К+. Имеется еще и протонный насос, выкачивающий из клеток ионы Н+, что создает отрицательный заряд клеток.
Теория ионных насосов существует давно, и вначале считали, что насосов должно быть столько, сколько ионов поступает или выводится из клеток. Однако специфика поступления различных ионов, известная в настоящее время, доказывает наличие только калий-натриевого и протонного ионных насосов.
За счет энергии переноса ионов водорода или натрия могут вводиться какие-то ионы или вместе с ним выводиться те или иные анионы.
Транспорт веществ против электрохимического градиента требует постоянного притока энергии, причем потребность в ней может возникать на различных этапах переноса элементов питания. Именно потребность в энергии объясняет тесную зависимость поглощения растениями питательных веществ от метаболических процессов дыхания и фотосинтеза, в результате которых образуются макроэргические соединения.
Скорость транспорта ионов с помощью переносчиков определяется скоростью оборота переносчика, которая зависит от температуры, концентрации кислорода, присутствия ингибитора и т. д.; числом связывающих мест переносчика, обладающих сродством к иону; занятостью активных участков, которая зависит от концентрации в среде переносимого и других ионов.
Широкому распространению теории переносчиков способствовало то, что она объяснила избирательность поглощения, взаимодействие ионов и ингибирование процесса рядом соединений. По-видимому, существует контрольный механизм, регулирующий поступление веществ в клетку по принципу обратной связи. Так, по данным Питмана, максимальное содержание ионов в клетках корня составляет 80—90 мг-экв/г сырой массы. Для различных растений это количество не зависит от концентрации ионов в растворе и достигается при поглощении из 10 мМ раствора за 10— 15 ч, из 1 мМ раствора — за 20 ч и из 0,1 мМ раствора — за 36 ч.