Читаем Аксиомы биологии полностью

Рис.29. На молекулярном уровне структура высшего уровня также определяется структурой низшего. На рисунке сверху первичная структура белка – цитохрома С, переносчика электронов в дыхательных цепях (обозначения те же, что и на рис. 16). Внизу: схема вторичной структуры – спирали Полинга – Кори. Ее поддерживают водородные связи между группами —CO – и —NH —. Что образуется из полипептида со вторичной структурой, показано на следующем рисунке.


Этот принцип соблюдается в природе начиная с молекулярного уровня. Первичная структура белковой молекулы – это последовательность аминокислотных остатков в полипептиде. Соседние звенья в пептидной цепочке соединяются водородными связями, образуя спиралеобразную фигуру (так называемая спираль Полинга-Кори). Это вторичная структура. Но спираль Полинга также образует трехмерную третичную структуру, специфичную для каждого белка. Наконец, отдельные белковые глобулы могут объединяться попарно и по четыре, а то и больше, образуя четвертичную структуру. Таков, например, гемоглобин.

И все эти структуры определяются одной – первичной. Значит, в генотипе нужно кодировать только последовательность аминокислот, все остальное возникает при соответствующих условиях само.

Мы уже рассматривали пример с вирусом табачной мозаики, который при подкислении среды распадается на отдельные молекулы белка и РНК. При подщелачивании происходит обратный процесс, именуемый самосборкой. Все вирусы в клетках хозяина возникают в результате самосборки молекул нуклеиновых кислот и белков, и их структуры однозначно определяются последовательностью аминокислот в белках (и, значит, нуклеотидов в ДНК).

И не только вирусы. В результате самосборки возникают все клеточные структуры – рибосомы и клеточные мембраны. А сами клетки? Возьмем для примера простейшее животное; всем известного пресноводного полипа – гидру. Фенотип ее состоит из немногих типов клеток (около десяти). Давно уже ставят эффектные опыты, когда гидр растирают на отдельные клетки и из них в результате процесса, похожего на самосборку, возникает целая гидра. Значит, структура фенотипа гидры однозначно определяется свойствами клеток, его слагающих.

С высшими организмами такой опыт не поставишь: слишком много типов клеток и слишком сложные структуры они образуют.


Рис. 31. Схема получения аллофенных мышей. Из яйцеводов беременных мышей извлекают яйцеклетки начавшие дробиться. Лучше всего опыт удается после трех делений (стадия восьми бластомеров). Для наглядности яйцеклетки берутся у мышей разной масти. Если обработать делящееся яйцо проназой – ферментом, расщепляющим белки, оно распадается на отдельные бластомеры. Отмытые от фермента бластомеры снова слипаются, даже если они от разных пород мышей. «Реассоциированный» зародыш можно пересадить в яйцеводы другой самки мыши. Финал – приемная мать изумленно смотрит на ни на что не похожее потомство (как та Сова из «Винни-Пуха» которая по ошибке снесла гусиное яйцо).


Если растереть высшее животное, скажем кролика, в кашицу, из клеток он заново не восстановится, Но на ранних стадиях развития подобные эксперименты удавались. Вы знаете из школьного курса, что оплодотворенная яйцеклетка млекопитающего уже в яйцеводах начинает дробиться, образуя зародыш. После трех дроблений зародыш соответственно состоит из восьми клеток (бластомеров).

Зародышей мыши на этой стадии извлекали из яйцеводов и обрабатывали раствором проназы. Это фермент, расщепляющий белки. Дробящаяся яйцеклетка распадалась на отдельные бластомеры. Можно смешать бластомеры разных пород мышей, например различающихся по окраске, отмыть от проназы и увидеть, как они будут слипаться друг с другом, вновь образуя зародыш. Такой зародыш можно пересадить другой мыши и дорастить до рождения и взрослого состояния. Мышей, явившихся на свет в подобных опытах, называют аллофенными.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже