Читаем Алекс в стране чисел. Необычайное путешествие в волшебный мир математики полностью

Фергюсон был последним, кто охотился за цифрами вручную, и первым, кто стал делать это, используя технику. Благодаря настольному калькулятору он прибавил почти 200 новых разрядов всего за год, так что в сентябре 1947 года π было известно с точностью до 808 десятичных знаков. А затем компьютеры изменили правила игры. Первым компьютером, сразившимся с π, был Электронный числовой интегратор и вычислитель ENIAC, построенный в последние годы Второй мировой войны по заказу армии США в Лаборатории баллистики в Мэриленде. Размером он был с небольшой дом. В сентябре 1949 года ENIAC за 70 часов работы вычислил π с точностью в 2037 знаков, побив предыдущий рекорд более чем на тысячу десятичных разрядов.

* * *

По мере появления новых знаков в числе π становилось все более ясно, что найденные числа не подчиняются никакому очевидному порядку. Однако только в 1767 году математики смогли доказать, что сумбурная последовательность цифр числа π никогда не повторяется. Это открытие вытекало из рассмотрения вопроса о том, числом какого типа может быть π.

Числа самого простого типа — натуральные. Это числа для счета, начинающиеся с единицы:

1, 2, 3, 4, 5, 6 …

Натуральные числа, однако, имеют некоторое ограничение, поскольку идут только в одном направлении. Более полезны целые числа, которые состоят из натуральных, нуля и отрицательных натуральных чисел:

… -4, -3, -2, -1, 0, 1, 2, 3, 4 …

Любое положительное или отрицательное целое число от минус бесконечности до плюс бесконечности входит в целые числа. Если бы нашлась гостиница с неограниченным числом этажей, а также с неограниченным числом все более глубоких подземных уровней, то кнопками в лифте там были бы все целые числа.

Числа другого основного типа — это дроби, которые представляют собой числа, записанные в виде a/b, где а и b — целые, причем b не равно 0. Поскольку дроби эквивалентны отношениям между целыми числами, они также называются рациональными числами[27], и их бесконечно много. На самом деле имеется бесконечно много рациональных чисел уже между 0 и 1. Давайте, например, возьмем дробь, числитель которой равен 1, а знаменатель — натуральное число, больше или равное 2. Это дает множество, составленное из

Можно пойти дальше и доказать, что имеется бесконечно много рациональных чисел между любыми двумя рациональными числами. Пусть с и d — любые два рациональных числа, причем с меньше d. Точка на полпути между с и d представляет собой рациональное число — оно равно (c + d)/2. Назовем эту точку e. Теперь можно найти точку на полпути между c и e. Это (c + e)/2 — рациональное число, которое также лежит между с и d. Будем продолжать так до бесконечности, каждый раз разбивая расстояние между с и d на все меньшие и меньшие части. Не важно, сколь малым было расстояние между с и d в самый первый раз — между ними всегда найдется бесконечно много рациональных чисел.

Поскольку между любыми двумя рациональными числами всегда можно найти бесконечно много рациональных чисел, можно было бы подумать, что каждое число — рациональное. Без сомнения, именно на это одно время и надеялся Пифагор. Его метафизика основывалась на вере в то, что мир состоит из чисел и гармонических пропорций между ними. Существование числа, которое нельзя описать как отношение, по крайней мере сильно ослабляло его позиции, если не прямо им противоречило. Но, к несчастью для Пифагора, имеются числа, которые нельзя выразить в виде дроби, и к его немалому конфузу, одно из них дает его собственная теорема. Если взять квадрат со стороной, равной единице, то длина его диагонали равна квадратному корню из двух, а это число нельзя записать в виде дроби. (Доказательство — в приложении 2 на веб-сайте, посвященном этой книге.)

Числа, которые нельзя записать в виде дроби, называются иррациональными. Согласно легенде, их существование впервые доказал ученик Пифагора Гиппас, что, однако, не подарило ему симпатии Пифагорейского братства: его объявили отступником и утопили в море.

Когда рациональное число записано в виде десятичной дроби, оно всегда или содержит конечный набор цифр, как, например, 1/2, которая записывается в виде 0,5, или же разложение рано или поздно начинает повторяться, как, например, для числа 1/3, которое записывается в виде 0,3333…, где тройки продолжаются без конца. Иногда число «зацикливается» через более чем одну цифру — так обстоит дело с дробью 1/19, которая записывается как 0,0526315789473684210…, где 18-значный период 526315789473684210 повторяется до бесконечности. Наоборот — и в этом-то все дело! — когда число иррационально, его десятичное разложение никогда не будет повторять само себя.

Перейти на страницу:

Все книги серии Galileo

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
1001 вопрос об океане и 1001 ответ
1001 вопрос об океане и 1001 ответ

Как образуются атоллы? Может ли искусственный спутник Земли помочь рыбакам? Что такое «ледяной плуг»? Как дельфины сражаются с акулами? Где находится «кладбище Атлантики»? Почему у берегов Перу много рыбы? Чем грозит загрязнение океана? Ответы на эти и многие другие вопросы можно найти в новой научно-популярной книге известных американских океанографов, имена которых знакомы нашему читателю по небольшой книжке «100 вопросов об океане», выпущенной в русском переводе Гидрометеоиздатом в 1972 г. Авторы вновь вернулись к своей первоначальной задаче — дать информацию о различных аспектах современной науки об океане, — но уже на гораздо более широкой основе.Рассчитана на широкий круг читателей.

Гарольд В. Дубах , Роберт В. Табер

Геология и география / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научпоп / Образование и наука / Документальное