Читаем Алекс в стране чисел. Необычайное путешествие в волшебный мир математики полностью

В написанном Карлом Саганом бестселлере «Контакт» инопланетянин предупреждает женщину на Земле, что после определенного количества цифр случайность в числе π исчезнет и там появится сообщение, записанное нулями и единицами. Это послание появится после десятичного разряда с номером 1020 — что представляет собой единицу с двадцатью нулями. Поскольку к настоящему моменту мы добрались «только» то 2,7 триллиона разрядов (число 27 с и нулями), то надо еще немного постараться, чтобы проверить, действительно ли там есть что-то в этом роде. На самом деле придется продвинуться даже еще чуть дальше, потому что послание, по-видимому, записано в 11-ричной системе.

Мысль о том, что в числе π есть закономерность, способна любому вскружить голову. Математики стали выискивать какие-либо указания на порядок в десятичных разложениях числа π, как только они появились. Иррациональность π означает, что цифры следуют друг за другом без какого-либо повторяющегося порядка, но это не исключает возможности появления упорядоченных кусков — таких, как послание, записанное нулями и единицами. До сих пор, однако, никто не нашел ничего важного. Хотя, надо сказать, у π есть свои причуды. Первый 0 появляется только на 32-м месте, что намного позже, чем можно было бы ожидать, коль скоро цифры распределены случайно. Первый раз, когда какая-либо цифра повторяется шесть раз подряд, наступает на 762-м десятичном знаке (и это 999 999). Вероятность столь раннего повторения шести девяток — если их появление случайно — меньше 0,1 процента. Эта последовательность известна как точка Фейнмана — выдающийся физик Ричард Фейнман однажды заметил, что хотел бы запомнить число π именно до этого места и закончить словами «девять, девять, девять, девять, девять, девять и так далее». Следующий раз, когда последовательно выпадают шесть одинаковых цифр, случается на 193 034-м месте, и цифры эти — снова девятки. Не послание ли это извне, и если да — то о чем оно?

Число считается нормальным, если каждая из его цифр от 0 до 9 появляется в его десятичном разложении с равной частотой. Нормально ли π? Канада изучил первые 200 миллиардов цифр числа π и нашел, что цифры появляются со следующими частотами:

020 000 030 841
119 999 914 711
220 000 136 978
320 000 069 393
419 999 921 691
519 999 917 053
619 999 881 515
719 999 967 594
820 000 291 044
919 999 869 180

Только цифра 8 кажется несколько избыточной, однако отличие статистически несущественно. Казалось бы, число π нормально, но никто не смог этого доказать. И никто не смог доказать, что такое доказательство невозможно. Поэтому есть шанс, что π не нормально. Быть может, вслед за 1020 знаками и правда идут только 0 и 1?

Другой, но связанный с предыдущим вопрос — это вопрос о положении чисел. Распределены ли они случайно? Стэн Вейгин проанализировал первые 10 миллионов цифр числа π на «покерный тест»: возьмем пять последовательных цифр и рассмотрим их, как если бы это были карты, сданные вам при игре в покер.

РаскладРеальная частота событияОжидаемая частота события
Все цифры различны604 976604 800
Одна пара, три различны1 007 1511 008 000
Две пары216 520216 000
Три одинаковые144 375144 000
Фулл хаус17 89118 000
Четыре одинаковые88879000
Пять одинаковых200200

В правом столбце показано, сколько раз можно было бы ожидать появления того или иного расклада, если число π нормально и если на каждой десятичной позиции с равным шансом могла бы стоять любая цифра. Результаты оказываются вполне в границах ожидаемого. Видно, что каждый расклад чисел появляется с правильной частотой, как было бы, если бы числа на каждой десятичной позиции генерировались случайным образом.

Имеются веб-сайты, на которых можно узнать, когда в числе π впервые появляется дата вашего рождения. Первое появление последовательности 0123456789 происходит на 17 387 594 880-м месте — что было установлено только после того, как Канада добрался туда в 1997 году.

Я спросил у Грегори, полагал ли он когда-либо, что в числе π может найтись какой-то порядок.

— Нет там никакого порядка, — бросил он довольно презрительно. — А если бы он там и был, то это было бы ненормально и неправильно. Так что нет смысла тратить на это время.

Вместо того чтобы искать закономерности в числе π, некоторые воспринимают его случайную природу как колоссальное выражение математической красоты. Число π — предопределенное, но при этом оно, по-видимому, необычайно хорошо имитирует случайность.

— Это очень хорошее случайное число, — соглашается Грегори.

Перейти на страницу:

Все книги серии Galileo

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
1001 вопрос об океане и 1001 ответ
1001 вопрос об океане и 1001 ответ

Как образуются атоллы? Может ли искусственный спутник Земли помочь рыбакам? Что такое «ледяной плуг»? Как дельфины сражаются с акулами? Где находится «кладбище Атлантики»? Почему у берегов Перу много рыбы? Чем грозит загрязнение океана? Ответы на эти и многие другие вопросы можно найти в новой научно-популярной книге известных американских океанографов, имена которых знакомы нашему читателю по небольшой книжке «100 вопросов об океане», выпущенной в русском переводе Гидрометеоиздатом в 1972 г. Авторы вновь вернулись к своей первоначальной задаче — дать информацию о различных аспектах современной науки об океане, — но уже на гораздо более широкой основе.Рассчитана на широкий круг читателей.

Гарольд В. Дубах , Роберт В. Табер

Геология и география / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научпоп / Образование и наука / Документальное