Читаем Алгоритм изобретения полностью

Однако в процессе изучения АРИЗ у изобретателя появляется новый личный опыт, основанный на решении учебных задач, на разборе различных примеров и т. д. Этот аризный опыт, насыщенный сильными изобретательскими идеями и не омертвленный отраслевыми рамками, способен помогать и на высших уровнях.

Психологическая инерция, делающая обычный личный опыт вредным при решении задач на высших уровнях, становится полезной при использовании аризного опыта: в этом случае вектор инерции направлен как раз в сторону сильных решений. Можно сказать так: простой личный опыт подсказывает плохие образцы, аризный опыт дает хорошие образцы (из неожиданной и далекой отрасли техники).

Аризный опыт накапливается постепенно по мере обучения. Первое время он почти неощутим. Но когда разобраны 30—40 учебных задач, когда изучены 40 приемов с примерами, когда составлена картотека интересных изобретательских решений, тогда часть задач может быть решена без АРИЗ — прямым использованием аризного опыта.

После изучения 30—40 учебных задач текст АРИЗ-71 следует дополнить шагом 2—0:

2—0. Как решались учебные задачи, аналогичные по смыслу данной задаче?

а) Сущность данной задачи.

б) Техническое противоречие в данной задаче.

в) Задача-аналог.

г) Техническое противоречие в задаче-аналоге.

д) Что аналогично в «б» и «г».

е) Идея решения задачи-аналога.

ж) Как изменить эту идею применительно к данной задаче.

Следует помнить, что при использовании аризного опыта надо переносить смысл идеи, а не конкретную конструкцию.

Рассмотрим, например, такую задачу:

Известен способ проходки тоннеля под действующим сооружением (например, в насыпи под железной дорогой), состоящий в том, что сквозь грунт продавливают (с применением вибраторов или без них) трубу, а затем извлекают грунт из внутренней полости трубы.

Толщина стенок продавливаемой трубы зависит от диаметра: чем больше диаметр, тем больше должна быть толщина стенок трубы. Но с увеличением толщины стенок недопустимо возрастает сила, необходимая для продавливания.

Нужен способ продавливания, лишенный этого недостатка.


Рис. 42. Задача-аналог помогает решить новую задачу


Используем для решения аризный опыт.

2—0. а) Сущность задачи: толстостенной трубе трудно двигаться в плотном грунте.

б) Увеличение скорости продавливания требует непомерного увеличения мощности продавливающих устройств.

в) Задача-аналог: движение ледокола сквозь лед.

г) Увеличение скорости движения сквозь лед требовало непомерного увеличения мощности двигателей.

д) В обоих случаях увеличение скорости движения объекта сквозь плотную среду требует недопустимого увеличения мощности.

е) Сквозь лед должен двигаться не сплошной, а полый корпус.

ж) Сквозь грунт должна двигаться не сплошная, а полая стенка.

Контрольный ответ: способ проходки тоннеля под действующим сооружением, например в насыпи под железной дорогой, с продавливанием элементов обделки и последующим извлечением грунтового ядра, отличающийся тем, что с целью уменьшения усилий, необходимых для продавливания, в качестве элементов обделки используют полые оболочки длиной, равной длине тоннеля, вдавливая их вдоль оси последнего, а затем полости оболочек освобождают от грунта и заполняют бетонной смесью (авторское свидетельство № 271555).

Смысл шага 2—0 можно проиллюстрировать такой схемой (рис. 42). Непосредственный переход 1 от данной задачи к ее решению труден. Более простым может оказаться путь 2—3—4—5—6: от данной задачи к задаче-аналогу (2); потом к области А, общей для обеих задач (3); далее к известному уже решению задачи-аналога (4); оттуда к области Б, общей для обоих решений (5); затем к решению данной задачи (6).

Чем точнее выбрана задача-аналог, тем больше области А и Б и тем легче осуществляется переход 2—3—4—5—6. По мере накопления опыта переноса область А может становиться все меньше: изобретатель начинает улавливать тонкое отдаленное сходство между задачами. Подчас это тонкое сходство трудно выразить словами. Иногда оно даже отчетливо не сознается изобретателем, а просто «чувствуется». Стороннему наблюдателю это кажется «осенением», «интуицией»...

Регулярные упражнения развивают способность работать при очень небольших областях А и Б, т. е. делают мышление острее, талантливее.

Учиться творческому мышлению

Первый семинар по методике решения изобретательских задач был проведен в Баку в 1959 году. Ныне творческая учеба налажена во многих городах нашей страны. Практика показывает, что уже после нескольких занятий слушатели начинают применять отдельные элементы АРИЗ: понятие о технических противоречиях, ИКР, типовые приемы. Решение задач все еще строится на методе «проб и ошибок», но сами пробы становятся более направленными и эффективными.

Чтобы полностью овладеть техникой решения задач по АРИЗ, нужны 20—30 занятий на семинаре, а затем — самостоятельная тренировка на протяжении нескольких месяцев: разбор учебных задач, решение новых задач, изучение учебно-методической литературы.

Перейти на страницу:

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Ошибки в оценке науки, или Как правильно использовать библиометрию
Ошибки в оценке науки, или Как правильно использовать библиометрию

Ив Жэнгра — профессор Квебекского университета в Монреале, один из основателей и научный директор канадской Обсерватории наук и технологий. В предлагаемой книге излагается ретроспективный взгляд на успехи и провалы наукометрических проектов, связанных с оценкой научной деятельности, использованием баз цитирования и бенчмаркинга. Автор в краткой и доступной форме излагает логику, историю и типичные ошибки в применении этих инструментов. Его позиция: несмотря на очевидную аналитическую ценность наукометрии в условиях стремительного роста и дифференциации научных направлений, попытки применить ее к оценке эффективности работы отдельных научных учреждений на коротких временных интервалах почти с неизбежностью приводят к манипулированию наукометрическими показателями, направленному на искусственное завышение позиций в рейтингах. Основной текст книги дополнен новой статьей Жэнгра со сходной тематикой и эссе, написанным в соавторстве с Олесей Кирчик и Венсаном Ларивьером, об уровне заметности советских и российских научных публикаций в международном индексе цитирования Web of Science. Издание будет интересно как научным администраторам, так и ученым, пребывающим в ситуации реформы системы оценки научной эффективности.

Ив Жэнгра

Технические науки