Некоторые из этих множеств не имеют общих элементов — например, множество молочных поросят и множество бродячих собак. А другие множества, наоборот, имеют общие элементы — скажем, множество бродячих собак и множество животных, буйствующих, как в безумии: ведь среди бродячих собак есть и бешеные. Если два множества не имеют общих элементов, говорят, что эти множества
Например, эти две прямые пересекаются в одной точке:
А эти два круга имеют бесконечно много общих точек:
Если же две фигуры не пересекаются, у них нет ни одной общей точки. Таковы, например, параллельные прямые:
или эти два квадрата:
Множество общих элементов двух множеств называется
Множество можно задавать не только указанием общего свойства всех предметов, входящих в это множество (как мы это делали до сих пор). Есть и другой способ: просто
Для того, чтобы легче было разбираться в том, как связаны различные множества, то есть каковы их объединение и пересечение, математик Эйлер (о нём мы уже писали) предложил обозначать множества кругами — эти круги называются обычно «кругами Эйлера». Например, для «слишком страшной истории», которую Герцогиня рассказывала Младенцу, круги Эйлера выглядят так:
Горизонтальными линиями здесь заштриховано «множество пиратов, потерявших левый глаз», вертикальными — «множество пиратов, потерявших правый глаз», а двойная штриховка обозначает пересечение этих множеств, то есть «множество пиратов, потерявших оба глаза».
Раз для множеств можно определить сложение и умножение (пусть даже и с несколько необычными свойствами), значит, можно построить и «алгебру множеств». Эта алгебра действительно была построена, и оказалось, что она в точности совпадает с той «алгеброй логики», которую построил Буль (с ним мы тоже уже знакомы)!
Совпадение это, конечно, не случайно: дело в том, что логика имеет дело с
— Какую машину Миша хочет?
— Красную
Тут уже говорится о
Пока учёные ограничивались
А вот когда стали изучать бесконечные множества, начались чудеса! К ним мы сейчас и перейдём.
НЕБЫЛИЦА О КАНТОРЕ, В КОТОРОЙ ВСЁ — ПРАВДА!