Одна из причин понятна всем: тот же хлопок растет далеко не везде, его урожаи и качество зависят от капризов природы. Но есть и внутренний «секрет»: химические волокна проще в переработке, они намного повышают производительность. Поэтому задача состоит в том, чтобы наделить их лучшими свойствами натуральных нитей…
За кулисами этой задачи — третья причина: похоже, за последние годы химики убедились, что у них гораздо больше шансов «перекачать» ценные свойства от натуральных волокон к химическим, чем наоборот.
Подтверждением тому — био-ПАНволокно. Сокращение ПАН выдает его полиакрило-нитрильную природу. Но в процессе получения эта синтетическая основа получает «добавку» в виде биомассы из особых микроорганизмов. И приобретает свойства, приближающие его к шерсти…
Способ получения углеродных волокон из хлопковых и льняных разработан еще в конце прошлого века. Но потом о нем надолго забыли. И вспомнили лишь тогда, когда ракетно-космическая техника потребовала легких и прочных теплозащитных материалов. Так появились современные углеродные волокна, которые в инертной среде выдерживают до трех тысяч градусов, а в окисленной — до четырехсот…
Сегодня углеродные волокна получают в основном из вискозных и поли-акрилонитрильных, нагревая их до высоких температур в инертной среде. При этом атомы кислорода, водорода, азота и других элементов «выжигаются», но углеродная цепочка полимерной молекулы остается. Понятно, что волокно с такой «конструкцией» получается хрупким. Но даже как простой наполнитель оно наделило изделия прочностью металла при весе в 3–5 раз меньше. А потом специалисты научились превращать его в нити, жгуты, ленты, ткани.
И сразу как из рога изобилия посыпались новые области применения. Костюмы с электроподогревом, отопительные элементы для домиков газовиков, теплиц, кабин тракторов и дорожных машин — они могут питаться током напряжением от 36 до 220 вольт. В конструкциях самолетов листовые панели на основе углеродной ленты вступили в спор со стеклопластиками, снижая вес конструкции на 10–15 процентов.
Углеродное волокно нашло применение и в фильтрах для очистки лекарств и донорской крови, в системах улавливания вредных выбросов и защиты органов дыхания. Здесь оно поглощает самые разные вредные вещества — вплоть до паров ртути — в 3–4 раза быстрее, чем активированный уголь.
Но и на этом перечень профессий углеродного волокна не кончается. До недавнего времени считалось, что углерод существует в трех формах — в виде алмаза, графита и аморфного углерода. Ученые же Института элементоорганических соединений АН СССР доказали, что есть и четвертый вариант — углерод с линейной структурой, получивший название карбин. По свойствам он — полупроводник. Но под действием света во много раз увеличивает электропроводность, благодаря чему может быть использован в фотоэлементах. А сегодня на основе карбина создано волокно витлан, незаменимое в восстановительной хирургии. Химики давно научились делать искусственные кровеносные сосуды из волокон. Но все они сохраняли недостаток естественных — в них образовывались тромбы. Сосуды же из витлана исключили эту опасность. Если уж менять что-то в организме на «запасные части», так пусть они будут лучше, чем созданные природой…
Первоначальная свежесть, питательные и вкусовые качества овощей и фруктов долго сохраняются благодаря специальной синтетической пленке, созданной Казахским научно-исследовательским институтом плодоводства и виноградарства в содружестве с химиками.
Идею подсказала природа, выработав у растений способность покрывать плоды слоем воска. Этот слой защищает их от потери влаги и от микроорганизмов, но на сорванных плодах быстро разрушается. Казахстанские ученые предложили заменить воск особо обработанным парафином. Пленка из него не боится низких температур и достаточно прочна. Этот защитный материал испытан на многих видах овощей и фруктов. Проведены опыты и с картофелем.
Клубни его при таком способе хранения длительное время остаются сочными. Некоторые виды пленок применяются на мясокомбинатах. Покрытое ими мясо долго не теряет своих первоначальных качеств.
Прочность металла обретают деревянные конструкции, обработанные по технологии эстонских ученых.
Обычные доски из малопригодных в строительстве лиственных мягких пород пропитываются в вакууме особым составом сланцевых смол, а затем, как керамические изделия, обжигаются в печи. Смолы, проникая во все поры древесины, затвердевают, и такая древесина уже не боится ни сырости, ни огня, ни биологически активных веществ. До термообработки конструкции можно придать любую форму, например, согнуть доску в колесо.