Читаем Альтернативные источники энергии и энергосбережение полностью

Также получить содержащиеся в термальной воде ценные компоненты (йод, бром, литий, цезий, кухонная соль, глауберова соль, борная кислота и многие другие) для их промышленного использования.

Преимуществом геотермальной энергетики является ее практически полная безопасность для окружающей среды. Количество СО2, выделяемого при производстве 1 кВт электроэнергии из высокотемпературных геотермальных источников, составляет от 13 до 380 г (например, для угля он равен 1042 г на 1 кВт/ч).

Недостатки геотермальной энергии:

♦ необходимость обратной закачки отработанной воды в подземный водоносный горизонт.

♦ высокая минерализация термальных вод большинства месторождений

♦ наличие в воде токсичных соединений и металлов.

 Внимание.

Эти недостатки, в большинстве случаев, исключает возможность сброса этих вод в расположенные на поверхности природные водные системы.

Отмеченные выше недостатки геотермальной энергии приводят к тому, что для практического использования теплоты геотермальных вод необходимы значительные капитальные затраты:

♦ на бурение скважин;

♦ обратную закачку отработанной геотермальной воды;

♦ на создание коррозийно-стойкого теплотехнического оборудования.

Говоря о недостатках, следует отметить, что тепло Земли очень «рассеянно», и в большинстве районов мира человеком может использоваться с выгодой только очень небольшая часть энергии. Из них пригодные для использования геотермальные ресурсы составляют около 1 % общей теплоемкости верхней 10-километровой толщи земной коры.


Перспективы развития


Однако в связи с внедрением новых, менее затратных, технологий бурения скважин, применением эффективных способов очистки воды от токсичных соединений и металлов капитальные затраты на отбор тепла от геотермальных вод непрерывно снижаются. Поэтому геотермальная энергетика в последнее время существенно продвинулась в своем развитии. Так, последние разработки показали возможность выработки электроэнергии при температуре пароводяной смеси ниже 80 °C, что позволяет гораздо шире применять ГеоТЭС для выработки электроэнергии. В связи с этим ожидается, что в странах со значительным геотермальным потенциалом, в первую очередь в США, мощность ГеоТЭС в самое ближайшее время удвоится.

Hot-Dry-Rock технология. Еще более впечатляет появившаяся несколько лет тому назад новая, разработанная австралийской компанией Geodynamics Ltd., поистине революционная технология строительства ГеоТЭС — так называемая технология Hot-Dry-Rock, существенно повышающая эффективность преобразования энергии геотермальных вод в электроэнергию. Суть этой технологии заключается в следующем.

До самого последнего времени в термоэнергетике незыблемым считался главный принцип работы всех геотермальных станций, заключающийся в использовании естественного выхода пара из подземных резервуаров и источников. Австралийцы отступили от этого принципа и решили сами создать подходящий «гейзер».

Для создания такого гейзера австралийские геофизики отыскали в пустыне на юго-востоке Австралии точку, где тектоника и изолированность скальных пород создают аномалию, которая круглогодично поддерживает в округе очень высокую температуру.

По оценкам австралийских геологов, залегающие на глубине 4,5 км гранитные породы разогреваются до 270 °C, и поэтому если на такую глубину через скважину закачать под большим давлением воду, то она, повсеместно проникая в трещины горячего гранита, будет их расширять, одновременно нагреваясь, а затем по другой пробуренной скважине будет подниматься на поверхность.

После этого нагретую воду можно будет без особого труда собирать в теплообменнике, а полученную от нее энергию использовать для испарения другой жидкости с более низкой температурой кипения, пар которой, в свою очередь, и приведет в действие паровые турбины. Вода, отдавшая геотермальное тепло, вновь будет направлена через скважину на глубину, и цикл, таким образом, повторится.

Принципиальная схема получения электроэнергии по технологии, предложенной австралийской компанией Geodynamics Ltd., приведена на рис. 6.1.



Рис. 6.1.Схема получения электроэнергии по технологии, предложенной австралийской компанией Geodynamics Ltd


Безусловно, реализовать эту технологию можно не в любом месте, а только там, где залегающий на глубине гранит нагревается до температуры не менее 250–270 °C. При применении такой технологии ключевую роль играет температура, понижение которой на 50 °C по оценкам ученых вдвое повысит стоимость электроэнергии.

Перейти на страницу:

Похожие книги