Читаем Аналитическая философия полностью

Проясним данный парадокс на примере. Согласно каждой высказывательной функции можно образовать класс предметов. Например, функции ‘чайная ложка (х)’ соответствует класс индивидов, удовлетворяющих данную функцию (т.е. при заполнении аргументного места, делающих соответствующее высказывание истинным) и являющихся чайными ложками. Принцип интуитивной абстракции позволяет образовывать классы с любым набором индивидов. Причем при неограниченном применении этого принципа в качестве индивидов могут выступать и сами классы (т.е. они сами могут рассматриваться как заполняющие аргументные места соответствующих функций). Например, функции ‘класс предметов (х)’ будет соответствовать класс всех классов любых предметов. При таком подходе некоторые классы могут содержать только индивиды, а некоторые – и индивиды, и классы, рассматриваемые в качестве индивидов. Среди последних особый интерес представляют классы, содержащие себя в качестве собственных элементов. Например, класс чайных ложек сам чайной ложкой не является, он состоит только из индивидов, а класс всех предметов, не являющихся чайными ложками, сам не будет являться чайной ложкой и, следовательно, будет являться членом самого себя. Образование классов последнего типа зависит от возможности образования таких функций, которые могут быть собственными аргументами. Рассмотрим еще один пример. Возьмем класс последнего типа, а именно класс всех тех классов, которые не являются элементами самих себя (в функциональном выражении ‘класс, не являющийся элементом самого себя (х)’). Если мы зададимся теперь вопросом о том, можно ли рассматривать сам этот класс как удовлетворяющий соответствующую себе функцию, получится противоречие. В самом деле, если он ее удовлетворяет, то он не должен содержаться в себе самом, а если он ее не удовлетворяет, то он должен содержаться в себе самом.

Противоречие демонстрирует неприемлемость такого понимания функции и аргумента, которое имеет место у Фреге, но это еще не означает, что неверна функциональная трактовка логической структуры высказывания. Для решения парадокса Рассел разрабатывает так называемую теорию типов, которая по существу сводится к ограничениям, накладываемым на образование классов, а стало быть, и соответствующих высказывательных (пропозициональных) функций. Так, например, он пишет: «Общность классов в мире не может быть классом в том же самом смысле, в котором последние являются классами. Так мы должны различать иерархию классов. Мы будем начинать с классов, которые всецело составлены из индивидов, это будет первым типом классов. Затем мы перейдем к классам, членами которых являются классы первого типа: это будет второй тип. Затем мы перейдем к классам, членами которых являются классы второго типа; это будет третий тип и т.д. Для класса одного типа никогда невозможно быть или не быть идентичным с классом другого типа»79. На образование классов необходимо накладывать ограничения, запретив образовывать классы, которые могли бы выступать в качестве своих собственных элементов. Классы должны образовывать строгую иерархию, где первый уровень представляли бы собой классы, содержащие только индивиды, второй уровень – классы, содержащие классы индивидов, третий уровень – классы, содержащие классы классов индивидов, и т.д. Разные уровни требуют различных средств выражения; то, что можно сказать об индивидах, нельзя сказать об их классах, а то, что можно сказать о классах индивидов, нельзя сказать о классах классов индивидов и т.д. В общем, это и составляет сущность теории типов.

В применении к высказывательным функциям это означает, что ни одна функция не может быть применена к самой себе; то, что рассматривается в качестве аргумента, никогда не должно становиться функцией, и наоборот, на одном и том же уровне. Последнее требование закрепляется Расселом в теории удовлетворительного символизма. Зафиксировать тип – значит зафиксировать соответствующий тип символа, указывающий на соответствующее значение. С точки зрения Рассела, к парадоксам приводит смешение различных типов, которого необходимо избегать. При таком подходе, очевидно, отпадает надобность в оценке контекста целостного высказывания. Значение символа должно заранее определяться словарем, который сконструирован иерархическим образом согласно типам, а правила образования выражений накладывают ограничения на использование словаря.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже