Критерии применимости теоретических конструктов открыто учитывают противоречащие факторы и никогда не могут дать «абсолютно окончательных доказательств, но в лучшем случае лишь доказательство, дающее большую вероятность». Карнап считает, что теоретическую сторону науки лучше строить в основном в терминах теоретических конструктов, а не диспозициональных или операциональных предикатов.
3.3.1.4 Вероятность и истинность
Поскольку большая часть научного знания формулируется в терминах теоретических конструктов, связанных с предложениями наблюдения посредством вероятностей, постольку структура научного знания включает в себя логику вероятностей. Учитывая это обстоятельство, Карнап в 50-е гг. затратил много труда на разработку проблемы вероятности.
То, уточнению чего служат теории вероятностей, не сводится, как обычно считают, к одному понятию, а содержит в себе два совершенно различных понятия. Одним из них является понятие степени подтверждения высказывания, а другим – понятие относительной частоты свойства или события в большом числе случаев. Тем самым в существенно отличных друг от друга, как это часто бывает, теориях вероятностей мы имеем дело не с противоположными интерпретациями одного понятия, как это кажется на первый взгляд, а с параллельными трактовками совершенно различных понятий, каждое из которых по-своему полезно. Существует, однако, тесное соответствие между этими двумя понятиями, так что почти все, что можно осмысленно сказать в терминах относительной частоты, можно адекватно перевести на язык степени подтверждения.
Из этих двух видов вероятности сам Карнап преимущественно занимается степенью подтверждения. Вероятность такого рода основывается на логике вероятностей, и, несмотря на некоторые различия, эта индуктивная логика в некоторых важных отношениях напоминает дедуктивную. Обе являются подлинными примерами логики. Обе представляют собой системы чисто априорных отношений, независимых от фактов и от истинности или ложности входящих в них посылок. В обеих отношение между посылками и заключением является «чисто логическим в том смысле, что оно зависит только от значений предложений, или, точнее, – от областей этих предложений». Можно даже сказать, что индуктивная логика является расширением дедуктивной логики за счет добавления некоторой новой функции подтверждения. Существенная разница между ними состоит в том, что только более ограниченная дедуктивная логика дает окончательные результаты, в то время как более широкая индуктивная или вероятностная логика дает только различные степени подтверждения.
Вероятности в том смысле, в каком Карнап в основном ими занимается, всегда отнесены к подтверждающим данным, и принципиальная проблема вероятностной логики состоит в том, чтобы найти способ так формулировать степень подтверждения некоторой гипотезы имеющимися данными, чтобы она в одно и то же время имела точное численное значение (от 0 до 1) и согласовалась с нашей интуицией и действительной практикой науки. Пока такие формулировки найдены самое большее для двух первых из пяти основных видов индуктивного вывода. Эти пять видов следующие:
Поиски количественной оценки вероятностей можно начинать с возможностей. Совокупность всех возможностей есть совокупность всех описаний состояний. Описание состояния есть конъюнкция предложений, устанавливающая «для каждого индивида... и для каждого свойства, обозначенного исходным предикатом, имеет или нет этот индивид это свойство». Область предложения состоит из тех описаний состояний, в которых оно выполняется.