Далее Лесьневский занимается анализом смысла отрицания. Поводом является следующая дефиниция в «Принципах математики»: «.p ( q.=.( p(q.» В связи с этой дефиницией предложения типа «q. (.p(r» можно интерпретировать при помощи предложений типа (1) ( q. (.p( r. Каков здесь смысл отрицания? – спрашивает Лесьневский. Рассел и Уайтхед считают, что символ «( p» представляет предложение «не-p» или «p есть ложь». Но, если выражение "p" есть предложение, то предложение типа «p есть ложь» может иметь смысл только тогда, когда "p" субъект предложения «p есть ложь» выступает в материальной суппозиции (упоминается). В конечном счете предложение «p есть ложь» является предложением о предложении "p", значащим то же, что предложение «
есть ложь»; субъект этого предложения, т.е. выражение «
» есть имя предложения "p" и не выступает, очевидно, в материальной суппозиции. Лесьневский вменяет авторам «Принципов» чрезмерно небрежное пользование кавычками. А это приводит к тому, что читатель вынужден додумывать, что предложение «p есть ложь» и предложение «
есть ложь» значат одно и то же. В конечном счете из предложения (1) мы получаем два предложения, которые являются интерпретациями выражения «( q. (.p( r»:
(2) не-q. (.p( r,
(3) "q" есть ложь. (.p( r.
Аналогичная ситуация возникает при интерпретации выражений типа «p(q», которые Рассел и Уайтхед отождествляют с предложением «p есть истина или q есть истина». Но к «p есть истина» применимы возражения, аналогичные тем, которые были применимы к «p есть ложь», вследствие которых рассматриваемое предложение интерпретируется как «
есть истина». Применяя к (2) и (3) различные комбинации оценок и трактовок модусов выражений "p" и "q" в интерпретации выражения «p(q» мы получим, замечает Лесьневский, другие способы прочтения этих предложений, а прочие появляются тогда, когда мы захотим «q есть ложь» заменить предложением «не-q есть истина»; вобщем Лесьневский приводит 17 интерпретаций предложения типа «q. (.p( r» и все они могут быть на основе этой металогики считаться равнозначными.
Суммируя критические замечания, Лесьневский писал: «Общаясь более или менее систематически с работой гг. Уайтхеда и Рассела с 1914 г. лично я лишь через четыре года уразумел, что образцы т.н. теории дедукции при не обращении внимания на знаки утверждения становятся понятными и „начинают держаться вместе“, если входящие в их состав предложения типа „( p“, „p(q“, „p(q“ и т.д. последовательно интерпретировать при помощи соответствующих предложений типа „не-p“, „p или q“, „если p, то q“ и т.д., дополненных в случае возможных недоразумений кавычками, и ни в коем случае – вопреки комментариям авторов – я не считаю допустимым прочтение указанных примеров при помощи предложений, касающихся предложений же и утверждающих какие-либо отношения, как, например, отношение „импликации“ между предложениями». ([1927], S.181)
Эти размышления Лесьневского, написанные в 1927 г. и относящиеся к периоду 1917-1918 гг. привели его к ряду фундаментальных идей. Одной из важнейших было последовательное различение языка и метаязыка: предложение «если p, то q» принадлежит к языку, а предложение «если
истинно, то истинно» – к метаязыку. Логическая система должна конструироваться в предметном языке, а комментироваться – в метаязыке; смешение языка с метаязыком приводит к недоразумениям и неясностям. Выяснивши для себя ситуацию с предметным языком и языком комментариев к нему (метаязыком) Лесьневский «ощутил доверие» к символическому языку, к которому ранее относился скептически.
И наконец, последний «урок», который извлек для себя Лесьневский из штудий «Принципов математики». Речь идет о проблеме экстенсиональности. Комментируя труд Рассела и Уайтхеда, Лесьневский указал на трудности, которые возникают в связи с оборотом «утверждается, что». Напомним, что по его мнению прочтение утверждений логики при помощи этого оборота приводит к пониманию логики как «дедуктивной исповеди создателей теории комментариев». Выражение «утверждается, что» является интенсиональным оператором, а его употребление приводит, кроме трудностей с подстановкой, к психологизму. Отвращение к интенсиональным операторам (или функторам, как их называет польская традиция) у Лесьневского так сильно было развито, что интенсиональные контексты он считал вообще лежащими вне сферы логики. Для Лесьневского термин «логика» был просто равнозначен термину «экстенсиональная логика».
Итак, результатами критики Лесьневским «Принципов математики» оказались два важных положения: во-первых, разделение языка и метаязыка и, во-вторых, убеждение в экстенсиональности всей логики.
Ян Лукасевич. В ЗАЩИТУ ЛОГИСТИКИ. http:philosophy.ru\library\lukasiewicz\apologist.html
Ян Лукасевич. ЛОГИСТИКА И ФИЛОСОФИЯ. http://www.philosophy.ru/library/lukasiewicz/logistyk.html
Ян Лукасевич. О НАУКЕ. http://www.philosophy.ru/library/lukasiewicz/onauce.html
Ян Лукасевич. О ТВОРЧЕСТВЕ В НАУКЕ. http://www.philosophy.ru/library/lukasiewicz/tvor_nau.html