Данные должны быть согласованными. Например, адрес конкретного клиента в одной базе данных должен совпадать с адресом этого же клиента в другой базе. При наличии разногласий один из источников следует считать основным или вообще не использовать сомнительные данные до устранения причины разногласий.
Каждое поле, содержащее индивидуальные данные, имеет определенное, недвусмысленное значение. Четко названные поля в совокупности со словарем базы данных (подробнее об этом чуть позже) помогают обеспечить качество данных.
Данные зависят от характера анализа. Например, исторический экскурс по биржевым ценам Американской ассоциации землевладельцев может быть интересным, но при этом не иметь никакого отношения к анализу фьючерсных контрактов на грудинную свинину.
Данные должны быть одновременно полными (то есть содержать все сведения, которые вы ожидали получить) и точными (то есть отражать достоверную информацию).
Между сбором данных и их доступностью для использования в аналитической работе всегда проходит время. На практике это означает, что аналитики получают данные как раз вовремя, чтобы завершить анализ к необходимому сроку. Недавно мне довелось узнать об одной крупной корпорации, у которой время ожидания при работе с хранилищем данных составляет до одного месяца. При такой задержке данные становятся практически бесполезными (при сохранении издержек на их хранение и обработку), их можно использовать только в целях долгосрочного стратегического планирования и прогнозирования.
Ошибка всего в
Далее мы остановимся на процессах и проблемах, способных ухудшить качество данных, на некоторых подходах для определения и решения этих вопросов, а также поговорим о том, кто отвечает за качество данных.
Ошибки могут появиться в данных по многим причинам и на любом этапе сбора информации. Давайте проследим весь жизненный цикл данных с момента их генерации и до момента анализа и посмотрим, как на каждом из этапов в данные могут закрадываться ошибки.
В данных всегда больше ошибок, чем кажется. По результатам одного из исследований[23]
, ежегодно американские компании терпят ущерб почти в 600 млн долл. из-за ошибочных данных или данных плохого качества (это 3,5 % ВВП!).Во многих случаях аналитики лишены возможности контролировать сбор и первичную обработку данных. Обычно они бывают одним из последних звеньев в длинной цепочке по генерации данных, их фиксированию, передаче, обработке и объединению. Тем не менее важно понимать, какие проблемы с качеством данных могут возникнуть и как их потенциально можно разрешить.
Цель этой части книги – выделить общие проблемы с качеством данных и возможные подводные камни, показать, как избежать этих проблем и как понять, что эти проблемы присутствуют в наборе данных. Более того, чуть позже вы поймете, что это призыв ко всем специалистам, работающим с данными, по возможности активно участвовать в проверке качества данных.
Итак, начнем с самого начала – с источника данных. Почему в данные могут закрасться ошибки и как с этим бороться?
Генерация данных – самый очевидный источник возможных ошибок, которые могут появиться в результате технологического (приборы), программного (сбои) или человеческого факторов.
В случае технологического фактора приборы могут быть настроены неправильно, что может сказаться на полученных данных. Например, термометр показывает 35 °C вместо 33 °C на самом деле. Это легко исправить: прибор или датчик можно настроить по другому, «эталонному», прибору, отражающему достоверные данные.
Иногда приборы бывают ненадежными. Мне довелось работать в грантовом проекте Агентства передовых оборонных исследовательских проектов Министерства обороны США (DARPA), посвященном групповой робототехнике. В нашем распоряжении была группа простейших роботов, задача которых заключалась в совместном картографировании местности. Сложность состояла в том, что инфракрасные датчики, установленные на роботах, были очень плохого качества. Вместо того чтобы сосредоточиться на разработке децентрализованного алгоритма для нанесения здания на карту, б