К сожалению, не совсем. Это все равно что в лесу падает дерево, но никто этого не слышит. Если специалисты по работе с данными проводят анализ, но никто не обращает на него внимания, и если результаты этого анализа никак не отражаются на процессе принятия решений в компании, то это нельзя считать управлением на основе данных. Специалисты по работе с данными должны информировать тех, кто принимает решения, и последние должны делать это, учитывая результаты работы аналитиков.
Дайкс предлагает термин «аналитическая цепочка ценности» (см. рис. 1.3). Данные ложатся в основу отчетов, которые будут способствовать проведению более глубокого анализа. Результаты анализа предоставляются лицам, принимающим решения, и процесс принятия решений строится на их основе. Это ключевой шаг. Данные и результаты анализа, о которых идет речь, требуются для принятия решения, способного повлиять на стратегию или тактику компании или ее развитие.
Технологии и обучение могут обеспечить первую часть плана: помочь специалистам по работе с данными с проведением анализа и представить результаты этого анализа. Однако именно от
Наконец мы добрались до самого важного аспекта, определяющего управление на основе данных. Для компании с управлением на основе данных именно данные – основной фактор, обусловливающий стратегию и влияющий на нее. В такой компании формируется конструктивная корпоративная культура, при которой данным доверяют, а результаты анализа бывают высокозначимыми, информативными и используются для определения следующих шагов.
В этом-то и заключается сложность. Если решения в компании принимаются на основе интуиции, как вывести ее на уровень управления на основе данных? Это процесс нелегкий и небыстрый, поэтому не стоит ожидать мгновенных изменений, однако все сотрудники компании могут внести свой вклад в этот процесс. Мы рассмотрим несколько способов, как стимулировать развитие в компании управления на основе данных.
Зрелость аналитических данных
В 2009 году Джим Дэвис, старший вице-президент и директор по маркетингу SAS Institute, выделил восемь уровней аналитических данных[14]
.Что произошло? Когда произошло? Например, ежемесячные финансовые отчеты.
Как много? Как часто? Например, специальные отчеты.
В чем конкретно проблема? Как найти ответы? Например, исследование данных о типах сотовых телефонов и поведении их пользователей.
Когда нужно действовать? Какие действия нужно предпринять немедленно? Например, загрузка ЦП, о которой говорилось ранее.
Почему это происходит? Какие возможности я упускаю? Например, почему все больше клиентов банков перекредитовываются для выплаты ипотеки.
Что, если этот тренд продолжится? Какой объем потребуется? Когда он потребуется? Например, компании, работающие в розничной торговле, могут прогнозировать спрос на продукты в зависимости от магазина.
Что произойдет дальше? Как это повлияет на бизнес? Например, казино прогнозируют, кто из VIP-посетителей будет больше заинтересован в конкретных пакетных предложениях по отдыху.
Как улучшить наши процессы? Какое решение сложной проблемы будет самым эффективным? Например, каков лучший способ оптимизировать ИТ-инфраструктуру с учетом многочисленных конфликтующих ограничений с точки зрения бизнеса и ресурсов?
Представленные идеи формируют график из книги Дэвенпорта и Харриса Competing on Analytics (2006)[16]
,[17], как показано на рис. 1.4.