Если сотрудники разных подразделений обладают навыками статистической работы и планирования экспериментов и хотя бы один сотрудник у них умеет работать с SQL, они будут более самодостаточными, независимыми, с более высокой скоростью реакции и масштабом деятельности.
Сотрудники принимают решения на основе качественных и количественных данных, полученных от настоящих покупателей. Им не приходится догадываться, как покупатели могут отреагировать на новую функцию.
Имея возможность проводить тестирования и интерпретировать их результаты, компания может быстрее внедрять инновации. За месяц сотрудники могут протестировать десятки или сотни идей по оптимизации сайта.
Реализация
Наконец, вам необходимо согласовать фактический план действий,
Согласуйте матрицу аналитических компетенций.
Поднимите планку качества для новых и действующих специалистов по аналитике. Стимулируйте действующих аналитиков развивать свои навыки.
Займите активную позицию в отношении качества данных. Разработайте систему обзора, оповещений и других способов контроля для отслеживания объема данных, их качества и возможных проблем.
Изучите SQL. Команды всех бизнес-подразделений должны стать более самодостаточными и уметь проводить более специализированные исследования.
Все менеджеры должны уметь работать со статистикой.
Свяжите все проекты с главными стратегическими целями компании. Каждому сотруднику должно быть ясно, почему в компании осуществляется или не осуществляется тот или иной проект и как расставлены приоритеты.
По возможности оперируйте конкретными цифрами, например ROI.
Для любого компонента корпоративной культуры, который вы захотите внедрить в своей компании, вам потребуется ответить на вопросы
Благодарности
Эта книга стала результатом совместного вклада в виде идей и помощи от коллег и экспертов. Я хочу выразить благодарность за чрезвычайно полезные советы, рекомендации и поддержку очень многим людям. Вот они: Эндрю Абел, Питер Айкен, Трейси Эллисон Олтман, Самарет Баскар, Лон Биндер, Нейл Блументаль, Йозеф Боренштайн, Льюис Брум, Трей Кози, Брайн д’Алессандро, Грег Элин, Саманта Эверитт, Марио Фариа, Стивен Фью, Том Фишбурн, Эндрю Фрэнсис Фриман, Дейв Джилбо, Кристина Ким, Ник Ким, Анджали Кумар, Грег Линден, Джейсон Гоуэнс, Себастьян Гутьеррес, Дуг Лейни, Шон Лисен, Дуг Мак, Патрик Махони, Крис Малиуот, Микайла Маркрич, Линн Массимо, Санья Матур, Мириа Мейер, Джули-Дженнифер Нгуен, Скотт Поли, Джефф Поттер, Мэтт Риццо, Макс Шрон, Анна Смит, Неллвин Томас, Дэниел Танкеланг, Джеймс Валландингхэм, Сатиш Ведантам, Дэниел Уайт и Дэн Вудс.
Кроме того, я благодарю всех своих коллег из Warby Parker, оказавших мне серьезную поддержку.
Мои искренние извинения всем, кого я ненамеренно не упомянул.
Особая моя благодарность Дэниелу Минтцу, Джули Стил, Дэну Вудсу, Лону Биндеру и Джун Эндрюс, выступившим в качестве технических редакторов и предложивших обоснованные и ценные комментарии, которые помогли мне значительно улучшить книгу.
Спасибо организаторам Data Driven Business, особенно Антанине Капчонава, и участникам форума Chief Data Officer Executive Forum, состоявшегося 12 ноября 2014 года в Нью-Йорке. Джеймс Валландингхэм внес изменения в рис. 4.1 специально для этой книги. Спасибо, Джим!
Хочу поблагодарить Себастьяна Гутьерреса за содержательную беседу и разрешение использовать некоторые примеры из его отличного курса по визуализации данных.
Я не могу обойти вниманием поддержку своих друзей и семьи, особенно моей жены Алексии, которая в шутку называла себя «книжной вдовой», а также моей мамы, которая поддерживает меня на протяжении всей жизни.
Наконец, невозможно не выразить благодарность всей великолепной команде издательства O’Reilly, особенно редактору книги Тиму Макговерну. Я признателен за проделанную работу Майку Лукидесу, Бену Лорика, Мари Богуро и производственной команде: Коллину Лобнеру, Люси Хаскинс, Дэвиду Футато, Киму Коферу, Элли Волькхаузен, Аманде Керси и Ребеке Демарест.
Об авторе
Карл Андерсон
— директор направления по работе с данными компании Warby Parker в Нью-Йорке. Он отвечает за технические аспекты этого направления, поддерживает более широкую аналитическую структуру и развивает в компании корпоративную культуру на основе данных. До этого работал преимущественно в области применения вычислительных машин для решения научных задач в разных компаниях из таких сфер деятельности, как моделирование в здравоохранении, сжатие данных, робототехника, моделирование с применением исполнительных устройств. Имеет степень Ph.D. в области математической биологии, полученную в Университете Шеффилда, Великобритания.Колофон