Многомерные шкалы
применяются, если свойства объекта/процесса не могут быть адекватно выражены в одномерном пространстве признаков (такое, например, бывает в случае, когда одним термином описывается некое комплексное явление, характеризующееся большим разбросом несвязанных между собой параметров). Нередко используются так называемые номографические шкалы, для которых характерно выделение на шкале, построенной в некоторой системе координат, кривых или поверхностей, для которых выполняется некоторое условие (функциональная зависимость), связывающее параметры, отложенные по координатным осям. Номографические шкалы позволяют оценить область пространства, в которой находится некоторая группа решений задачи или, наоборот, выдвинуть гипотезу о принадлежности априори неизвестной функциональной зависимости некоторому классу. Для представления многомерных шкал часто используются различные двухмерные отображения объемных тел, выступающих в качестве метафоры многомерного пространства. Однако, в силу действия ограничений пространственного мышления человека, в случае необходимости отображения многомерной шкалы с количеством параметров, превышающим три, как правило, используются связные развертки таких тел или совокупность связных (по одному или двум параметрам) двухмерных или трехмерных шкал.Приведенная классификация шкал позволяет осмыслить ранее введенное понятие метрики или меры близости, поскольку использование шкал дает возможность перейти от абстрактного к предметному мышлению, благодаря возможности пространственной интерпретации терминов. Следует заметить, что переход от абстрактного мышления к предметному является одним из мощнейших инструментов активизации мышления,
такие переходы на некоторых этапах анализа обеспечивают возможность априорной верификации гипотез (без проведения эксперимента). В явном виде представленное пространство признаков позволяет выбрать класс метрик, пригодных для сравнения экспертных оценок, и методов их анализа.В зависимости от типа геометрической интерпретации пространства могут использоваться различные методы упорядочения, сравнения, вычисления среднего значения и так далее. Пространства признаков
могут быть векторными (с учетом направления), скалярными, неметризованными, евклидовыми, сферическими и иными — в зависимости от выбора для выполнения перечисленных операций используется различный математический аппарат. Наиболее распространенными видами геометрической интерпретации пространства признаков являются так называемые евклидовы векторные пространства, в которых определены операции сложения и умножения на действительные числа, а также операция скалярного произведения, что позволяет вводить метрику для определения расстояний, длин векторов и решения иных задач. Характерно, что такие системы могут быть переведены в ортонормированный базис, что позволяет воспользоваться привычными приемами тригонометрических вычислений.После того, как некоторым способом (анкетирование, опрос по системе Дельфи, мозговой штурм и т. п.) была получена совокупность экспертных оценок по некоторой проблеме, от этапа сбора данных методом экспертных оценок переходят к процедуре обработки и оценивания результатов
. Здесь большую роль играет то, каким образом на этапе составления анкеты или логической схемы опроса было организовано пространство признаков, соответствовала ли система шкал задачам, решаемым в ходе опроса, существует ли возможность сопоставить полученные результаты и вывести по ответам экспертов некую закономерность. Мы не случайно вновь упомянули шкалы и пространство признаков: очевидно, что одно дело обрабатывать величины дискретные, а другое — непрерывные, или, что решение задачи меньшей размерности проще, чем решение задачи большой размерности, в которой трудно выделить логически независимые блоки.Для решения задачи обработки и анализа экспертных оценок широко используются как общие математические и статистические методы, так и специфические методы — такие, как:
- методы ранжирования и гиперупорядочения;
- методы попарных сравнений;
- метод отбрасывания альтернатив;
- алгоритмы отыскания медианы и иные.
Важную группу методов образуют методы математической обработки
„
76результатов измерений :
- методы отбраковки результатов аномальных измерений;
- методы оценки ошибок и погрешностей;
- методы обработки неравноточных измерений;
- метод наименьших квадратов;
- методы корреляционного анализа.