Основная задача баз знаний и баз моделей — хранение логически организованной информации, обеспечивающей возможность с применением логического аппарата и системы аксиом различного рода сформулировать вывод о состоянии, тенденции или характеристиках процесса. При этом аксиомы, хранимые в базе знаний или базе моделей, могут носить как характер абсолютных утверждений, так и вероятностных суждений относительно некоторых сущностей и процессов, иметь общую значимость или быть истинными лишь для некоторого класса начальных условий.
Существуют разные подходы к построению баз знаний. Наиболее типичными подходами (моделями представления знаний) являются логические, сетевые, продукционные и фреймовые модели
.— множество базовых терминов (например, имен объектов, действий и т. п.);
— множество аксиом (синтаксически и семантически корректных высказываний из базовых терминов);
— множество методов вывода из множества аксиом синтаксически и семантически корректных высказываний;
— множество методов соотнесения терминов с входными терминами;
— множество методов построения синтаксически корректных высказываний из терминов;
— множество методов установления факта принадлежности синтаксически корректных высказываний к множеству синтаксически и семантически корректных высказываний.
— множество информационных единиц;
— множество типов связей между информационными единицами (временные, причинно-следственные, родо-видовые и т. п.);
— множество связей между информационными единицами.
Такие модели получили название семантических сетей, среди которых, в зависимости от типов связей, принято выделять классифицирующие, функциональные сети, сценарии и семантические сети, не специализированные по типу отношений.
— семантическая сеть;
— множество правил вывода (продукций).
Такие модели вместо логического вывода на множестве аксиом используют вывод на знаниях.
В качестве технологической платформы для построения базы знаний могут быть избраны навигационные, реляционные и объектные базы данных, языки гипертекстовой разметки, программы, разработанные на языках логического программирования и обработки символьных данных и программы, разработанные на языках программирования общей семантики. Выбор технологической платформы может быть продиктован как спецификой хранимых знаний, так и наличествующим у разработчика инструментарием (не говоря о требованиях к быстродействию, уровню конфиденциальности знаний и т. д.).
9.3 Экспертные системы
Эксперты высокого класса не всегда есть под рукой, их опыт всегда специфичен, да и ротацию кадров следует учитывать. Технология же экспертных систем позволяет улучшить (если не исправить) ситуацию в кадровой сфере, а также оптимизировать работу экспертов высокого класса, переложив решение рутинных проблем на «плечи» автоматизированных систем. Поэтому экспертные системы нашли широкое применение в современной аналитике. Заметим, что экспертные системы являются инструментом, способным оперировать, в том числе, и знаниями, еще не прошедшими процедуру научного обобщения и формализации — кроме экспертных систем это может делать только человек. К этому следует прибавить, еще и то, что способности человека по оперативному извлечению необходимых знаний и данных из памяти ограничены и подвержены влиянию целого ряда внешних условий (например, стрессовые ситуации, колебания физических параметров среды обитания и т. п.).
В качестве иллюстрации к последнему утверждению приведем курьезный пример. В 1990-е годы в Италии провели интересный эксперимент: специально отобранной группе девушек были предложены для решения два идентичных задания, первое из которых они решали, будучи одеты в одежду делового стиля, а второе — в бикини. Второе задание было решено с чуть ли не в два раза худшими результатами, чем первое. А ведь это всего лишь изменение стиля одежды… Чего же ожидать от человека, если поместить его в действительно экстремальные условия?