Читаем Аналитика полностью

В последнее время наблюдается оживление рынка программного обеспечения, предназначенного для веденияинтеллектуального анализа данных (в англоязычных источниках — Data Mining, т. е. «раскопка данных»). Для этого класса систем ИИ характерно комплексное использование методов, используемых в логических системах ИИ и нейрокомпьютинге, в сочетании с инструментарием статистического анализа данных и компьютерной лингвистики. Только по состоянию на начало 1999 года на американском рынке интеллектуального программного обеспечения было представлено свыше пятнадцати программных и программно-аппаратных комплексов, относящихся к этому классу[67]. Безусловно, все эти системы нуждаются в обучении, профессиональной настройке и адаптации к предметной области, в которой предполагается их дальнейшее использование. В большинстве своем, они представляют собой системы искусственного интеллекта, ориентированные на решение задач анализа «абстрактных» типов данных (т. е. безотносительно к их семантике), интегрированные со сконфигурированными под потребности заказчика базами данных. Иным вариантом поставки систем data mining является вариант, предполагающий настройку и адаптацию системы искусственного интеллекта (собственно, инструмента Data Mining) под уже существующую подсистему хранения данных заказчика.

В любом варианте поставки по мере функционирования системы она выделяет некие скрытые закономерности в хранимых массивах данных (в том числе — корреляции временных рядов). Такие корреляции не всегда очевидны для аналитика, однако, для систем data mining числа — родная стихия. Системы data mining не имеют обыкновения забывать или упускать из внимания сколь бы то ни было «незначительные детали» и закономерности — это свойство делает их полезным инструментом информационно-аналитической работы.

Принцип функционирования систем интеллектуального анализа данных состоит в том, что на основе анализа потока данных, поступающих от разнообразных источников информации, формируется информационный образ неким образом интерпретируемой ситуации, который в ходе дальнейшей эксплуатации системы может быть «узнан», о чем и информируется потребитель. Отрасль, для которой создается такая система, на этапе разработки, в принципе, не существенна, поскольку важен лишь принцип формирования системы признаков и класс данных, на которые ориентирована данная система (количественные, качественные).

Адаптация к предметной области этого класса программного обеспечения заключается в том, что предметная область подлежит моделированию и описанию в виде совокупности измеримых атрибутов. Поведение этих атрибутов во времени неким (наперед неизвестным) образом характеризует состояние и поведение систем. С точки зрения исследователя интерес представляет именно то, каким образом наблюдаемые ситуации и тенденции отражаются в имеющемся наборе атрибутов, не существует ли неких признаков, характеризующих начальный период зарождения негативной или позитивной тенденции, скатывания к неким сценариям в развитии ситуации и т. п.

Еще раз заметим: системы data mining не работают напрямую с текстами произвольного формата и данными, которые не могут быть непосредственно сопоставлены. Максимум, что они «могут», если не располагают тезаурусом, характерным для данной предметной области — это работа со структурно-статистическими признаками и временными распределениями.

Если разобраться, то, на самом деле, такие системы могут оказаться полезными даже в случае отсутствия интепретанты у впервые проявившегося признака, поскольку системы интеллектуального анализа данных способны лишь акцентировать внимание аналитика на неких всплесках, по совокупности интегральных или частных показателей отличающих ситуацию от эталона нормы. Какую именно интерпретацию получат эти признаки — вопрос квалификации аналитика, поскольку задача систем интеллектуального анализа данных — это выделение сэмпла, но никак не снабжение его некой семантикой. Системы этого типа работают подобно периферийному зрению человека — они реагируют лишь на изменения (периферийное зрение человека обеспечивает только сигнализацию о перемещениях в «опасной» зоне, но за распознавание движущегося объекта оно не берется).

Перейти на страницу:

Похожие книги

Биология добра и зла. Как наука объясняет наши поступки
Биология добра и зла. Как наука объясняет наши поступки

Как говорит знаменитый приматолог и нейробиолог Роберт Сапольски, если вы хотите понять поведение человека и природу хорошего или плохого поступка, вам придется разобраться буквально во всем – и в том, что происходило за секунду до него, и в том, что было миллионы лет назад. В книге автор поэтапно – можно сказать, в хронологическом разрезе – и очень подробно рассматривает огромное количество факторов, влияющих на наше поведение. Как работает наш мозг? За что отвечает миндалина, а за что нам стоит благодарить лобную кору? Что «ненавидит» островок? Почему у лондонских таксистов увеличен гиппокамп? Как связаны длины указательного и безымянного пальцев и количество внутриутробного тестостерона? Чем с точки зрения нейробиологии подростки отличаются от детей и взрослых? Бывают ли «чистые» альтруисты? В чем разница между прощением и примирением? Существует ли свобода воли? Как сложные социальные связи влияют на наше поведение и принятие решений? И это лишь малая часть вопросов, рассматриваемых в масштабной работе известного ученого.

Роберт Сапольски

Научная литература / Биология / Образование и наука
Эволюция: Триумф идеи
Эволюция: Триумф идеи

Один из лучших научных журналистов нашего времени со свойственными ему основательностью, доходчивостью и неизменным СЋРјРѕСЂРѕРј дает полный РѕР±Р·ор теории эволюции Чарльза Дарвина в свете сегодняшних представлений. Что стояло за идеями великого человека, мучительно прокладывавшего путь новых знаний в консервативном обществе? Почему по сей день не прекращаются СЃРїРѕСЂС‹ о происхождении жизни и человека на Земле? Как биологи-эволюционисты выдвигают и проверяют СЃРІРѕРё гипотезы и почему категорически не РјРѕРіСѓС' согласиться с доводами креационистов? Р' поисках ответа на эти РІРѕРїСЂРѕСЃС‹ читатель делает множество поразительных открытий о жизни животных, птиц и насекомых, заставляющих задуматься о людских нравах и Р­РўР

Карл Циммер

Научная литература / Биология / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература