Полезным свойством дерева целей и задач является то, что оно может отображать не только иерархию процессов, уточняющих содержание отдельных операций, но и временную развертку процесса.Развертывание дерева целей и задач во времени позволяет ввести процедуры анализа ресурсоемкости на каждом из этапов реализации замысла, установить режим рационального распределения ресурсов, обеспечивающий соответствие темпов поступления различных ресурсов текущим частным задачам.
То есть, речь идет не о конструктивной декомпозиции, а о комбинации структурной и временной декомпозиции.Параллельно может быть синтезировано дерево, предназначенное для отображения и анализа частных показателей эффективности и рисков. При этом заметим, что каждому частному процессу дерева целей и задач может быть сопоставлена совокупность таких показателей
(следует понимать, что эффективность и риск — это две различных характеристики, в общем случае, пребывающие в антагонистических отношениях). Приведем упрощенный пример: если при выезде из гаража автомобиль заправляется топливом в расчете на оптимальный маршрут следования и режим «зеленой волны», то риск (вероятность того, что при минимальном изменении условий задача не будет решена) становится максимальным. Автомобиль может истратить топливо, стоя в пробке где-нибудь на дальних подъездах к конечной точке следования. При функционировании в нестационарных условиях ни одна абсолютно эффективная (в физикалистской трактовке) система не может быть признана устойчивой.Далее полученные деревья (развернутое во времени дерево целей и задач, а также дерево частных показателей рисков и эффективности) комбинируются и предоставляются на повторное обозрение экспертов, задачей которых является выбор того или иного варианта (на основе личного опыта). При этом чрезвычайно важно, чтобы эксперты мобилизовали свой опыт решения задач, связанный с вариациями обстановки, и на его основе оценили объем необходимых резервных мощностей
(запас прочности предлагаемого решения). Производится ранжирование по степени предпочтительности выбора того или иного метода решения для каждой частной задачи. Здесь, в частности, могут быть использованы методы многомерного шкалирования с последующей обработкой результатов (по схеме с одним или несколькими турами опроса), а также методы сравнительного анализа векторов, входящих в множество Парето-оптимальных вариантов[77]. Впрочем, конкретных вариантов реализации существует масса, в том числе и таких, которые являются специфичными для данной отрасли.Выбор методов операционного анализа в сочетании с методами теории отношений предпочтения и полезности позволяет снизить значимость субъективного фактора, сократить размерность пространства альтернатив и лишь потом обращаться к установлению полезности тех или иных объектов или действий
. Кроме того, подход к определению эффективности с позиций теории отношений предпочтения и полезности позволяет оценить приемлемость использования конкретных типов сверток, о которых говорилось выше.Применение теории отношений предпочтения и полезности предполагает необходимость проведения строгого обоснования выбора определенного набора показателей (выражаемых через другие показатели) на основе морфологического анализа системы показателей, построения дерева целей и задач, анализа возможностей замещения тех или иных подцелей дерева соответствующими показателями. Полученный в результате такой работы набор показателей должен удовлетворять требованиям
— полноты (
набор показателей должен отражать полную совокупность проблем, связанных с достижением глобальной цели);— неизбыточности
(частные показатели не должны дублироваться, выводиться друг из друга);— атомарности
(показатель должен быть выражением одной частной проблемы, относящейся к данному уровню иерархии);— представительности
(показатели замещают частные задачи);— сравнимости
(показатели должны обеспечивать возможность упорядочения альтернатив решения задачи);