Читаем Аналитики. Никомахова этика полностью

На том же основании величина, и время, и движение или слагаются из неделимых [частей] и делятся на них, или же нет. Это ясно из следующего. Если величина слагается из неделимых частей, то движение по ней будет состоять из равного числа неделимых движений. Например, если [величина] АВГ состоит из неделимых [частей] А, В, Г, то движение ΔEZ, которым двигалось [тело] Ω по [пути] АВГ, будет иметь неделимой каждую из своих частей. Если же при наличии движения необходимо чему-нибудь находиться в состоянии движения и, [наоборот], если нечто движется, должно наличествовать движение, то и само состояние движения будет составлено из неделимых [частей]. Пусть Ω прошло [путь] А, движимое движением Δ, [путь] В – движением Е и Г таким же образом [движением] Z. Если необходимо, чтобы [тело], движущееся откуда-нибудь куда-нибудь, не одновременно начало двигаться и завершило движение там, куда оно начало двигаться (например, если кто-нибудь идет в Фивы, невозможно, чтобы он одновременно шел в Фивы и пришел в Фивы), a Ω двигалось по не имеющему частей [пути] А, поскольку существовало движение А, то, следовательно, если [Ω] пришло позднее», чем проходило [путь А], то движение [Δ] будет делимым (ведь когда Ω проходило, оно ни покоилось, ни уже прошло, но было [где-то] посередине). Если же оно одновременно проходит и прошло, то идущий [предмет], в то время как идет, уже придет туда и кончит движение там, куда двигался. Если же что-нибудь движется по целому [пути] АВГ и движение, которым оно движется, есть ΔEZ, а по не имеющему частей [пути] А ничто не может двигаться, а сразу становится продвинувшимся, тогда движение будет состоять не из движений, а из [мгновенных] перемещений и не двигавшееся сразу окажется продвинувшимся, ибо А было пройдено без прохождения. Следовательно, можно будет прибыть куда-нибудь, никогда не проходя [пути]; прошел его, не проходя его. Если, далее, необходимо всему или покоиться, или двигаться, то [Ω] покоится на каждом [отрезке] А, В, Г, следовательно, будет нечто одновременно покоящееся и движущееся, ибо оно прошло весь [путь] АВГ и на любой части [этого пути] покоилось, так что покоилось и на всем [пути]. И если движения ΔEZ неделимы, то при наличии движения возможно будет не двигаться, а покоиться, если же это не движения, то движение состоит не из движений.

Подобным же образом, как длина и движение, должно быть неделимым и время и слагаться из неделимых «теперь», так как если всякое [движение] делимо и тело, движущееся с равной скоростью, в меньшее [время] проходит меньший путь, то и время будет делимым. Если же время, в течение которого [тело] проходит [путь] А, будет делимо, то будет делимо и А.

Глава вторая

Так как всякая величина делима на величины (ибо доказано, что ничто непрерывное не может состоять из неделимых частей, а всякая величина непрерывна), то необходимо, чтобы более быстрое [тело] в равное время проходило больший [путь], а в меньшее проходило равный или в меньшее больший [путь], как и определяют некоторые [выражения] «более быстрое».

Пусть [тело] А движется быстрее, чем [тело] В. Так как, стало быть, более быстрым будет то, что раньше изменяется, то в течение того времени, когда А изменилось из Г и Δ (например, за время ZH). В еще не дойдет до Δ, а отстанет, так что в равное время более быстрое [тело] проходит больше [рис. 1]. Но и в меньшее время оно также [может пройти] больше; именно, [положим, что] в то время, когда А будет у Δ, более медленное [тело] В будет у Е. Так как А дошло до Δ в течение всего времени ZH, у Θ оно будет в меньшее время, положим ZK. Итак, [путь] ГΘ, который прошло тело А, больше [пути] ГЕ, время же ZK меньше всего времени ZH, следовательно, оно в меньшее время проходит больший [путь]. Отсюда также очевидно, что и равный [путь] более быстрое [тело] проходит в меньшее время. Ибо так как оно в меньшее время проходит больше, чем более медленное, а взятое само по себе проходит больший [путь] в большее время, чем меньший, например ΛМ по сравнению с ΛΞ, то время прохождения ΛМ, а именно ПР, будет больше [времени] ПΣ, в которое [тело] проходит путь ΛΞ [рис. 2]. Следовательно, если ПP время меньшее, чем ПХ, в которое более медленное [тело] проходит путь ΛΞ, то и ПΣ будет меньше ПХ, так как оно меньше ПР, а меньшее меньшего и само меньше. Следовательно, [более быстрое тело] продвинется на равную величину в меньшее время.


Рис. 1. За время ZH тело А проходит путь ГΔ, а тело В путь ГЕ. За время ZK тело А проходит путь ГΘ.


Рис. 2. Тело А проходит путь ΛΞ за время ПΣ и путь ΛМ за время ПР. Тело В проходит путь ΛΞ за время ПХ.


Перейти на страницу:

Похожие книги

История Франции. С древнейших времен до Версальского договора
История Франции. С древнейших времен до Версальского договора

Уильям Стирнс Дэвис, профессор истории Университета штата Миннесота, рассказывает в своей книге о самых главных событиях двухтысячелетней истории Франции, начиная с древних галлов и заканчивая подписанием Версальского договора в 1919 г. Благодаря своей сжатости и насыщенности информацией этот обзор многих веков жизни страны становится увлекательным экскурсом во времена антики и Средневековья, царствования Генриха IV и Людовика XIII, правления кардинала Ришелье и Людовика XIV с идеями просвещения и величайшими писателями и учеными тогдашней Франции. Революция конца XVIII в., провозглашение республики, империя Наполеона, Реставрация Бурбонов, монархия Луи-Филиппа, Вторая империя Наполеона III, снова республика и Первая мировая война… Автору не всегда удается сохранить то беспристрастие, которого обычно требуют от историка, но это лишь добавляет книге интереса, привлекая читателей, изучающих или увлекающихся историей Франции и Западной Европы в целом.

Уильям Стирнс Дэвис

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Образование и наука
История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
История Бога: 4000 лет исканий в иудаизме, христианстве и исламе
История Бога: 4000 лет исканий в иудаизме, христианстве и исламе

Откуда в нашем восприятии появилась сама идея единого Бога?Как менялись представления человека о Боге?Какими чертами наделили Его три мировые религии единобожия – иудаизм, христианство и ислам?Какое влияние оказали эти три религии друг на друга?Известный историк религии, англичанка Карен Армстронг наделена редкостными достоинствами: завидной ученостью и блистательным даром говорить просто о сложном. Она сотворила настоящее чудо: охватила в одной книге всю историю единобожия – от Авраама до наших дней, от античной философии, средневекового мистицизма, духовных исканий Возрождения и Реформации вплоть до скептицизма современной эпохи.3-е издание.

Карен Армстронг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература