Читаем Аналитики. Никомахова этика полностью

То же надо сказать и по поводу трудности, которая заключается в следующем. Если линия Е будет равна линии Z, и А будет двигаться непрерывно от крайней точки по направлению к Г, и одновременно, когда А будет находиться в [точке] В, Δ будет равномерно двигаться от крайней точки линии Z к точке Н со скоростью, равной скорости А, то Δ, [по-видимому], раньше придет в Н, чем А в Г, так как прежде двинувшееся и отошедшее должно прийти раньше [рис. 7]. Таким образом, не одновременно А пришло в [точку] В и отошло от нее, потому и запаздывает. Ведь если бы это [произошло] одновременно, оно не запоздало бы, но [телу] А необходимо остановиться. Следовательно, нельзя так рассматривать вопрос, что, когда А пришло в [точку] В, Δ одновременно совершало движение от края Z (ибо, если А пришло в В, оно и удалилось оттуда, а это [происходит] не одновременно); между тем оно было [в В] не в течение какого-то времени, а в точке разреза времени. Отсюда следует, что о непрерывном [движении] таким образом рассуждать нельзя; наоборот, о [движении], возвращающемся назад, необходимо рассуждать именно так. Ибо если тело Н перемещалось по направлению к Δ, а затем, повернув назад, пошло вниз, то оно воспользовалось конечной точкой Δ как концом и началом, т. е. одной точкой как двумя; поэтому ему пришлось остановиться. И не в одно и то же время [тело Н] пришло в Δ и отошло от Δ, иначе в одно и то же «теперь» оно там было и не было. Но указанного выше разрешения трудности здесь не следует применять, так как нельзя сказать, что Н находилось в Δ как в точке разреза и, [следовательно], не приходило и не уходило: ведь [здесь] необходимо дойти до конца, существующего в действительности, а не только в возможности. Точка в середине [отрезка] существует в возможности, а эта [точка Δ] в действительности, и она есть конец снизу и начало сверху; то же относится и к движению. Следовательно, необходимо, чтобы при поворачивании назад по прямой линии [тело] остановилось. Таким образом, непрерывное движение по прямой не может быть вечным.


Рис. 7


Таким же способом следует возразить тем, которые выдвигают рассуждение Зенона и полагают, что если всегда сначала надо пройти половину, а число половин бесконечно, то бесконечного пройти нельзя[35]; или тем, которые формулируют это же рассуждение иначе, утверждая, что вместе с движением надо отсчитывать половину каждой возникающей половины, так что, пройдя все расстояние, приходится сосчитать бесконечное число, а это, по общему признанию, невозможно.

В наших первых рассуждениях о движении мы разрешили [этот вопрос], исходя из того, что время заключает в себе бесконечное множество [частей]; ибо нет ничего нелепого, если в бесконечное время кто-нибудь пройдет бесконечное множество; ведь бесконечность одинаково присуща и длине, и времени. Но такое решение достаточно для ответа тому, кто так поставил вопрос (спрашивалось ведь, можно ли в конечное [время] пройти или сосчитать бесконечно многое), однако для сути дела и для истины недостаточно. Если кто-нибудь оставит в стороне длину и вопрос о возможности пройти в конечное время бесконечное [множество] и попытается применить это [рассуждение] к самому времени (ведь время заключает в себе бесконечное множество делений), то приведенное решение уже не будет достаточным, но правильно будет сказать то именно, о чем мы говорили немного выше.

В самом деле, если кто-либо делит непрерывную [линию] на две половины, тот пользуется одной точкой как двумя, так как он делает [эту точку] началом и концом; так поступает и тот, кто считает, и тот, кто делит пополам. При таком делении ни линия, ни движение не будут непрерывными, так как непрерывное движение есть движение по непрерывному, а в непрерывном заключено бесконечное [число] половин, но только не в действительности, а в возможности. Если же их сделать действительными, то [движение] не будет непрерывным, но будет останавливаться, что вполне очевидно произойдет с тем, кто считает половины; ведь ему тогда необходимо одну точку считать за две: одна будет концом одной половины, другая – началом другой, если считать непрерывную [линию] не как одну, а как две половинные. Таким образом, на вопрос, можно ли пройти бесконечное число [частей] во времени или по длине, следует ответить, что в одном отношении можно, в другом нет. Если они будут существовать в действительности – нельзя, если в возможности – можно, так как [предмет], движущийся непрерывно, прошел бесконечное множество по совпадению, а не прямо, ибо наличие бесконечного числа половин в линии есть для нее побочное обстоятельство, а сущность ее и бытие иные.

Перейти на страницу:

Похожие книги

История Франции. С древнейших времен до Версальского договора
История Франции. С древнейших времен до Версальского договора

Уильям Стирнс Дэвис, профессор истории Университета штата Миннесота, рассказывает в своей книге о самых главных событиях двухтысячелетней истории Франции, начиная с древних галлов и заканчивая подписанием Версальского договора в 1919 г. Благодаря своей сжатости и насыщенности информацией этот обзор многих веков жизни страны становится увлекательным экскурсом во времена антики и Средневековья, царствования Генриха IV и Людовика XIII, правления кардинала Ришелье и Людовика XIV с идеями просвещения и величайшими писателями и учеными тогдашней Франции. Революция конца XVIII в., провозглашение республики, империя Наполеона, Реставрация Бурбонов, монархия Луи-Филиппа, Вторая империя Наполеона III, снова республика и Первая мировая война… Автору не всегда удается сохранить то беспристрастие, которого обычно требуют от историка, но это лишь добавляет книге интереса, привлекая читателей, изучающих или увлекающихся историей Франции и Западной Европы в целом.

Уильям Стирнс Дэвис

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Образование и наука
История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
История Бога: 4000 лет исканий в иудаизме, христианстве и исламе
История Бога: 4000 лет исканий в иудаизме, христианстве и исламе

Откуда в нашем восприятии появилась сама идея единого Бога?Как менялись представления человека о Боге?Какими чертами наделили Его три мировые религии единобожия – иудаизм, христианство и ислам?Какое влияние оказали эти три религии друг на друга?Известный историк религии, англичанка Карен Армстронг наделена редкостными достоинствами: завидной ученостью и блистательным даром говорить просто о сложном. Она сотворила настоящее чудо: охватила в одной книге всю историю единобожия – от Авраама до наших дней, от античной философии, средневекового мистицизма, духовных исканий Возрождения и Реформации вплоть до скептицизма современной эпохи.3-е издание.

Карен Армстронг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература