Читаем Аналитики. Никомахова этика полностью

Итак, из сказанного очевидно, что если отрицательная посылка – общая и о необходимо присущем, то всегда получается силлогизм не только о том, что возможно не присуще, но и о том, что не присуще; если же утвердительная посылка – общая и о необходимо присущем, то силлогизма никогда не получится. Очевидно также и то, что если при таком же отношении терминов посылки будут о необходимо присущем или о присущем, то силлогизм и получается и не получается. Ясно и то, что все эти силлогизмы несовершенные и что они становятся совершенными посредством ранее указанных фигур.

Глава двадцатая

[Силлогизмы по третьей фигуре, которых обе посылки – о возможно присущем]

В последней фигуре получится силлогизм и когда обе посылки будут о возможно присущем, и когда таковой будет лишь одна посылка. Когда же посылки – о возможно присущем, заключение также будет о возможно присущем; и точно так же тогда, когда одна посылка – о возможно присущем, а другая – о присущем. Когда же одна посылка – о необходимо присущем, и притом она утвердительная, не будет никакого заключения – ни о необходимо присущем, ни о присущем. Но если она отрицательная, то получится заключение о том, что не присуще, как и в предыдущих случаях. Однако и здесь возможное в заключениях следует понимать так же, как прежде.

Пусть сперва обе посылки будут о возможно присущем, и А и Б пусть будут возможно присущи всем В. Так как [обще] утвердительная посылка обратима в частную, а Б возможно присуще всем В, то и В возможно присуще некоторым Б. Так что если А возможно присуще всем В, а В – некоторым Б, то необходимо, чтобы и А было возможно присуще некоторым Б; получается первая фигура. И если А возможно не присуще ни одному В, а Б присуще всем В, то необходимо, чтобы и А было возможно не присуще некоторым Б; посредством обращения снова получится первая фигура. Если же обе посылки отрицательные, то из них самих ничего необходимого не вытекает; но если эти посылки подвергнуть превращению, то силлогизм получится, как и в предыдущих случаях. В самом деле, если А и Б возможно не присущи В, то при замене этих посылок посылками о возможно присущем снова получится первая фигура посредством обращения. Если же один из крайних терминов содержится в общей посылке, а другой – в частной и оба они находятся друг к другу в том же отношении, что и в посылках о присущем, то силлогизм и получится и не получится. В самом деле, пусть А будет возможно присуще всем В, а Б – некоторым В. Тогда посредством обращения частной посылки снова получится первая фигура, ибо если А возможно присуще всем В, а В – некоторым Б, то А возможно присуще некоторым Б. И точно так же, если БВ – общая посылка. Равным образом, если посылка АВ – отрицательная, а БВ – утвердительная. И здесь посредством обращения получится первая фигура. Но если обе посылки – отрицательные, и притом одна – общая, а другая – частная, то из них самих не получится силлогизма, однако если их подвергнуть превращению, то силлогизм получится, как и в предыдущих случаях. Наконец, если обе посылки – неопределенные или частные, то силлогизма не получится, ибо в этом случае А необходимо и присуще всем Б и не присуще ни одному Б. Терминами для случая, когда А присуще Б, пусть будут: живое существо – человек – белое; а для случая, когда А не присуще: лошадь – человек – белое. Средним термином пусть будет белое.

Глава двадцать первая

[Силлогизмы по третьей фигуре, в которых одна посылка – о присущем, а другая – о возможно присущем]

Если же одна из посылок – о присущем, а другая – о возможно присущем, то заключение будет о возможно присущем, а не о присущем. Силлогизм же получится, если термины будут находиться друг к другу в том же отношении, что и в предыдущих случаях. В самом деле, пусть сперва посылки будут утвердительными и пусть А будет присуще всем В, а Б – возможно присуще всем В. Если БВ подвергнуть обращению, то получится первая фигура и заключение будет о том, что А возможно присуще некоторым Б, ибо если одна из посылок в первой фигуре – о возможно присущем, то и заключение будет о возможно присущем. Точно так же – если БВ есть посылка о присущем, а АВ – о возможно присущем. И если АВ – посылка отрицательная, а БВ – утвердительная и, кроме того, одна из посылок, все равно какая, – о присущем, то в обоих случаях заключение будет о возможно присущем, ибо здесь снова получается первая фигура, а было показано, что если одна из посылок в ней – о возможно присущем, то и заключение будет о возможно присущем. Но если отрицательная посылка о возможно присущем содержит меньший крайний термин или обе посылки отрицательные, то из самих принятых посылок не получится силлогизма. Если же эти посылки подвергнуть превращению, то силлогизм получится, как и в предыдущих случаях.

Перейти на страницу:

Похожие книги

История Франции. С древнейших времен до Версальского договора
История Франции. С древнейших времен до Версальского договора

Уильям Стирнс Дэвис, профессор истории Университета штата Миннесота, рассказывает в своей книге о самых главных событиях двухтысячелетней истории Франции, начиная с древних галлов и заканчивая подписанием Версальского договора в 1919 г. Благодаря своей сжатости и насыщенности информацией этот обзор многих веков жизни страны становится увлекательным экскурсом во времена антики и Средневековья, царствования Генриха IV и Людовика XIII, правления кардинала Ришелье и Людовика XIV с идеями просвещения и величайшими писателями и учеными тогдашней Франции. Революция конца XVIII в., провозглашение республики, империя Наполеона, Реставрация Бурбонов, монархия Луи-Филиппа, Вторая империя Наполеона III, снова республика и Первая мировая война… Автору не всегда удается сохранить то беспристрастие, которого обычно требуют от историка, но это лишь добавляет книге интереса, привлекая читателей, изучающих или увлекающихся историей Франции и Западной Европы в целом.

Уильям Стирнс Дэвис

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Образование и наука
История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Психология подросткового и юношеского возраста
Психология подросткового и юношеского возраста

Предлагаемое учебное пособие объективно отражает современный мировой уровень развития психологии пубертатного возраста – одного из сложнейших и социально значимых разделов возрастной психологии. Превращение ребенка во взрослого – сложный и драматический процесс, на ход которого влияет огромное количество разнообразных факторов: от генетики и физиологии до политики и экологии. Эта книга, выдержавшая за рубежом двенадцать изданий, дает в распоряжение отечественного читателя огромный теоретический, экспериментальный и методологический материал, наработанный западной психологией, медициной, социологией и антропологией, в талантливом и стройном изложении Филипа Райса и Ким Долджин, лучших представителей американской гуманитарной науки.Рекомендуется студентам гуманитарных специальностей, психологам, педагогам, социологам, юристам и социальным работникам. Перевод: Ю. Мирончик, В. Квиткевич

Ким Долджин , Филип Райс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Психология / Образование и наука