В целях безопасности для пользователя в СМА широко применяются блокировочные устройства и специальные термозамки (в дальнейшем — просто замки). Все эти устройства обеспечивают фиксацию загрузочного люка или верхней крышки СМА во время вращения барабана. В простейшем случае блокировочное устройство представляет собой электромагнит.
Защелки, запирающие люк СМА, все время удерживаются пружиной. При включении СМА в сеть и при нажатии кнопки открывания люка, защелка втягивается внутрь катушки электромагнита, и становится возможным открыть загрузочный люк. Гораздо большее распространение получили замки с термоэлементами. На рис. 7.1 представлено несколько типов термозамков.
Рис. 7.1.
Основу их конструкции составляют специальные термоэлементы и биметаллическая пластина (одна или две). Термоэлемент представляет собой полупроводниковый резистор с положительным температурным коэффициентом. Этот резистор резко увеличивает свое сопротивление, когда превышена его некоторая характеристическая температура. Подобные резисторы имеют название: РТС-термистор (Positive Temperature Coefficient), а комбинация термоэлемента с биметаллической пластиной называется РТС+биметалл.
Конструкций подобных замков — великое множество, но мы подробно рассмотрим принцип действия и устройство самых распространенных.
На рис. 7.2 показано внутреннее устройство термозамков с плоским РТС-термистором.
Рис. 7.2.
После закрывания крышки или загрузочного люка СМА на выводы замка подается напряжение питания (в данном случае 220 В). В течение нескольких секунд термистор нагревается сам и нагревает биметаллическую пластину, к которой он прижимается одной из контактных пружин. Биметаллическая пластина при нагреве изгибается, контакты замыкаются и остаются в таком положении в течение всего времени работы СМА, пропуская напряжение питания на электросхему СМА. Также при замыкании контактов замка попутно приводится в действие запорный механизм, фиксирующий крышку или дверцу загрузочного люка.
По окончании программы стирки напряжение питания с замка снимается, термоэлемент и биметаллическая пластина остывают (примерно 2–4 минуты), и становится возможным открыть люк.
Электрическая схема таких замков проста и показана на рис. 7.3.
Рис. 7.3.
Как видим, вывод
Рис. 7.4.
Многие замки имеют дополнительные пары контактов, которые обеспечивают полную защиту от включения СМА с открытой крышкой.
Также и количество термоэлементов может быть больше — например, на рис. 7.5 показан замок с двумя круглыми термоэлементами и с дополнительными контактами.
Рис. 7.5.
Рассмотрим еще несколько типов замков более сложных конструкций. На рис. 7.6 показаны два замка также с круглыми термоэлементами.
Рис. 7.6.
В качестве исполнительных в этих замках применены перекидывающиеся контакты — такой же конструкции, как в датчиках давления. Контакты переключаются специальным коромыслом на шарнире. Принцип действия коромысла показан на рис. 7.7: при подаче напряжения на термоэлемент нагреваются также биметаллические пластины сверху и снизу «таблетки», вследствие чего коромысло переключает контакты.
Рис. 7.7.
И наконец, рассмотрим еще один интересный замок — он комбинированного типа: в нем и РТС+биметалл и электромагнит. На рис. 7.8 он также показан в разобранном виде.
Рис. 7.8.
Этот замок содержит дополнительный РТС-резистор, который ограничивает ток через катушку электромагнита. На рис. 7.9 приведен чертеж этого замка.
Рис. 7.9.
При закрывании крышки СМА замок получает импульс от электронного модуля через контакт