Устройство ядра оказалось загадкой еще более трудной, чем устройство атома. Ведь противоположно заряженные электрон и ядро связывает сила электрического притяжения — сила, известная со времен Максвелла и давно одомашненная. А что удерживает вместе одноименные заряды ядра? Что преодолевает огромные силы электрического отталкивания? Ведь эти силы в миллиарды раз больше атомных из-за того, что ядро в сто тысяч раз меньше атома.
Этот ядерный вопрос до сих пор не получил полного ответа, но один из первых шагов к его решению сделал Игорь Тамм в 1934 году.
Незадолго до того экспериментаторы открыли новую частицу — электрически незаряженную, нейтральную, — назвали ее поэтому нейтрон. Но во всем остальном нейтрон оказался похож на протон. Их признали равноправными составляющими ядра и объединили общим названием — нуклон. Уже это решило несколько ядерных головоломок, но остался вопрос о силе, связывающей частицы ядра.
Тамм предположил, что связывать протон и нейтрон может обмен известными легкими частицами (из которых самая известная — электрон), как будто нуклоны все время перебрасываются мячиками из рук в руки. Это была новая идея. Новая и… неправильная. Тамм сам провел соответствующий расчет, убедился, что сила слишком мала, и опубликовал свой отрицательный результат. Отрицательный только на первый взгляд.
По пути, намеченному Таммом, пошел в 1935 году японский теоретик Юкава, который, однако, не стал заранее назначать частицу, обмен которой связывает нуклоны в ядре. И тоже получил отрицательный результат — подходящая частица должна была иметь массу в 200 раз больше массы электрона, а поскольку такой частицы никто не наблюдал, грустно заметил он, «изложенная теория находится, по-видимому, на неверном пути».[88]
Путь был верный. Через два года, в 1937 году, экспериментаторы открыли частицу с такой массой. Ее назвали мезон, от греческого слова, означающего промежуточный, средний по массе между электроном и протоном. Нашли новую частицу, но не закон ядерного взаимодействия. Путь был верный, но очень извилистый. Физики не догадывались тогда, что найденная частица — не та, которую предсказал Юкава. Убедятся они в этом только через десять лет, к счастью для научного прогресса тут же найдут «ту» частицу и передадут ей имя мезон.
А пока — и все следующее десятилетие — проблема ядерных сил стояла перед физикой, и все следующее десятилетие Тамм видел перед собой эту проблему.
Десятилетие это было самым черным в жизни Тамма. В 1937-м он лишился троих близких ему людей: младшего брата, друга юности и любимого ученика. Почему его самого не объявили врагом народа, понять трудно, но в хаосе Великого террора таких непонятных вещей много. Ясно только, что звание члена-корреспондента Академии наук тогда не защищало, и ядерной физике было еще далеко до стратегической профессии.
Потери тридцать седьмого года повлекли за собой, однако, оргвыводы — ректор университета порекомендовал Тамму подать в отставку с должности заведующего кафедрой теоретической физики. А после ареста в 1938 году сотрудника ФИАНа Румера приняли меры и в Академии наук. Из-за «необеспеченности руководства со стороны заведующего отделом [Тамма], недостаточной работы по подготовке кадров» теоротдел формально закрыли, а его сотрудников распределили по лабораториям.[89]
Затем мрачные годы войны и эвакуации института в Казань до осени 1943 года.
Только после возвращения ФИАНа в Москву теоротдел восстановили и Тамм занял свое место.
Труднее было с творческой безработицей — за десятилетие после 1937 года Тамм не решил никакой задачи, сопоставимой с результатами предшествующих лет. Условия военного времени многое могут объяснить. Но для страстной натуры Тамма такие объяснения мало что значили. Значила бесплодность усилий построить теорию ядерных сил.
К природному энтузиазму Тамма добавлялось то, что в физику он входил в революционное для нее время, когда радикально менялись самые основные ее понятия: пространство, время, причинность. Осуществилась мечта алхимиков — ядерные «алфизики» научились превращать один элемент в другой. Выдающиеся физики, начиная с Бора, даже вполне серьезно обсуждали другую несбыточную мечту — вечный двигатель. А Тамму самому удалось внести вклад в понимание неэлементарности элементарных частиц.
Это теперь ясно, что революционный период в фундаментальной физике закончился в начале 30-х годов. А поколение, на глазах которого революция совершалась, надолго сохранило революционный азарт. Азартный от рождения Тамм — в особенности. У него, настоящего профессионала, за плечами было семь первоклассных результатов, включая теорию излучения Вавилова — Черенкова (за которую ему предстояло получить Нобелевскую премию). Однако сам он больше всего ценил свою — неправильную в узком смысле слова — идею 1934 года о механизме ядерных сил. Тогда он имел дело с передним краем физического знания, и выдвинутая им идея была шагом за этот край.[90]