Согласно преданию, дошедшему до ученика Аристотеля Евдема, Фалес был первым, проявившим теоретический интерес к некоторым простейшим геометрическим соотношениям. Но даже если это было и так, Фалес, по-видимому, не имел в этом деле прямых продолжателей: ни о ком из последующих мыслителей-ионийцев не сообщается, что они сколько-нибудь серьезно занимались математикой. Следует поэтому согласиться с мнением древних авторов, утверждавших, что заслуга создания математики как теоретической дедуктивной дисциплины принадлежит в основном пифагорейской школе.
Разумеется, это произошло не сразу и не было делом одного лишь Пифагора, как бы он ни был гениален. На ранних этапах существования пифагорейской школы интерес к числу носил религиозно-мистическую окраску. Числам — особенно числам, находившимся в пределах первой десятки,— приписывались особые, сверхъестественные свойства. Эти числа были не просто числа: они составляли сущность окружающего мира, ибо все многообразие вещей и явлений сводилось в конечном счете к числовым соотношениям. Такое отношение к числу было чревато последствиями колоссальной важности. Числа, ранее принадлежавшие к сфере ремесла и практической деятельности, приобрели у пифагорейцев высший онтологический статус. Пифагорейцы начали изучать числа не потому, что это было им нужно для чего-то другого, а потому, что ничего более достойного изучения они не знали.
Отсутствие письменных документов не позволяет сколько-нибудь надежно восстановить последовательность открытий, которые делались в пифагорейской школе. Прежде всего они ввели противопоставления: единица — множество и чет—нечет. Разделению чисел на четные и нечетные придавалось у них особое значение. В связи с этим была тщательно изучена проблема делимости на два (соответствующая теория была воспроизведена Евклидом в IX книге «Начал»). Затем было обращено внимание на то, что некоторые числа (простые) делятся только на самих себя, другие же могут быть представлены в виде произведения двух или большего числа сомножителей. Простые числа пифагорейцы называли «линейными», числа, являвшиеся произведениями двух или трех простых сомножителей, соответственно с — «плоскими» или «телесными».
Далее из натурального ряда были выделены ряды из «треугольных», «квадратных», «пятиугольных» и т. д. чисел. Смысл этих обозначений становится ясным из рис. 2. на котором приведены геометрические построения, дающие получать соответствующие ряды.
Путем аналогичных пространственных построений пифагорейцы получали также «пирамидальные» и т. п. числа.
Дальнейшая разработка делимости целых чисел привела пифагорейцев к идее рациональной дроби. В V в. до н. э. греки научились оперировать, с дробями типа m/n, производя с ними все четыре действия,— с тем ограничением, что вычитать можно было лишь из большего меньшее число (заметим, что египтяне умели производить действия с дробями, но только выражая их в виде дробей типа 1/n). Историки математики предполагают, что к концу V в. до н. э. в Греции уже была построена общая теория делимости, содержавшая в качестве частного случая теорию делимости на 2. Позднее эта теория вошла в состав VII книги Евклида.
Параллельно с арифметикой развивалась также геометрия. Но здесь информация, которой мы располагаем, носит еще более скудный характер. Пифагорейцев прежде всего привлекали свойства фигур (треугольников, квадратов и т. д.), которые могут быть выражены числовыми отношениями. Нетрудно понять, что особый, интерес у них вызвало соотношение между сторонами прямоугольного треугольника, получившее наименование - теоремы Пифагора. Правда, мы не знаем, каким образом и когда было получено доказательство этой теоремы; то доказательство, которое приводится в «Началах» Евклида несомненно имеет более позднее происхождение.
Примерно около середины V в. до н. э. было обнаружено существование несоизмеримых отрезков, т. е. таких, отношение которых друг к другу не может быть выражено не только целым числом, но и любым отношением целых чисел. К их числу принадлежат, например, сторона квадрата и его диагональ. Имеются основания предполагать, что автором открытия был пифагореец Гиппас из Метапонта; с его именем связаны легенды, на которых мы не будем останавливаться. Мы не знаем, каким путем Гиппас пришел к своему открытию; по этому поводу исследователями античной математики выдвигались различные гипотезы.