Рассматривая вращение отрезка вокруг одного из его концов, автор «Механических проблем» обращает внимание па тот факт, что ни одна из точек, находящихся на этом отрезке, не будет двигаться с одинаковой скоростью, но точки, отстоящие от центра дальше, будут двигаться с большей скоростью по сравнению с точками, лежащими ближе к центру. Круговое движение рассматривается при этом как сумма двух движений: прямолинейного, направленного по касательной к кругу, и центростремительного, направленного к центру круга. Первое из них является естественным, второе — насильственным. Точка, движущаяся по внешнему (большему) кругу, будет, проходя одно и то же расстояние, отклоняться к центру на меньшую величину, чем точка, движущаяся по внутреннему (меньшему) кругу. Отсюда следует, что для движения по внешнему кругу требуется приложить меньше усилия, чем для движения по кругу внутреннему, но скорость движения на внешнем круге будет больше. Именно это обстоятельство лежит, по мнению автора трактата, в основе действия рычага.
Изложенные рассуждения представляют собой причудливую смесь метафизических спекуляций и верных наблюдений. До научной механики здесь еще очень далеко, но некоторые мысли автора бесспорно интересны. Предположение о том, что прямолинейное движение само по себе является «естественным» движением, выводит нас за пределы чисто перипатетических представлений и может рассматриваться в качестве первой, хотя и очень нечеткой формулировки принципа инерции. Кроме того, утверждение, что для большего отклонения от прямолинейного движения требуется приложить большее усилие, уже содержит намек на существование зависимости между силой и ускорением, т. е. на второй закон динамики.
Заслуживает также внимания тот факт, что автору «Механических проблем» уже был известен принцип параллелограмма скоростей — как в форме сложения, так и в форме разложения движений.
Но намеки так и остались намеками. Зарождавшиеся в «Механических проблемах» тенденции не получили дальнейшего развития. Несмотря на широкое распространение военных метательных орудий как в эллинистическую, так и в римскую эпоху, мы не можем заметить никакого прогресса в области изучения динамики вплоть до VI в. н. э., т. е. фактически вплоть до начала средневековья. Это лишний раз свидетельствует об отрыве теоретической мысли от практической (ремесленной, инженерной) деятельности, который был характерен для рабовладельческого общества.
Что касается рычага, то он продолжал оставаться в центре внимания ученых эллинистической эпохи, но трактовался ими в чисто статическом плане, главным образом в связи с проблемой весов и взвешивания. Так, например, условия равновесия рычага рассматриваются в псевдоевклидовом трактате «Книга о весах», дошедшем до нас лишь в арабском переводе. Автор этого сочинения дает определение веса как меры тяжести или легкости предмета, сопоставляемого с другими предметами с помощью весов. Затем путем передвижки одних и тех же грузов вдоль коромысла весов, разбитого на равные отрезки, устанавливается закон равновесия рычага. При этом автор пользуется понятием «сила веса», которая меняется в зависимости от положения груза на коромысле. По смыслу проводимых рассуждений «сила веса» эквивалентна статическому моменту, т. е. произведению груза на его расстояние от точки опоры.
Проблемой рычага много занимался Архимед. Правда, его ранние сочинения по этому вопросу — «О весах» и «О рычагах» — не сохранились, но дошедший до нас трактат «О равновесии плоских фигур» начинается с изложения математической теории равновесия рычага, после чего Архимед переходит к изложению общей теории равновесия, основным понятием которой является понятие центра тяжести (которое в этом трактате предполагается читателю известным). Форма изложения здесь, как и в других книгах Архимеда, строго аксиоматическая. Доказав ряд общих теорем Архимед определяет центры тяжести ряда плоских фигур — треугольника, параллелепипеде, трапеции, а во второй части трактата - параболического сегмента и параболической трапеции.
В одной из позднейших работ Архимед упоминает свое сочинение «О равновесии». То, что это сочинение не тождественно с трактатом о равновесии плоских фигур, показывают ссылки Архимеда на центры тяжести круга, цилиндра, призмы, конуса, параболоида вращения. Возможно, что трактат «О равновесии плоских фигур» был лишь одной частью более обширного труда «О равновесии», за которой следовала другая часть, посвященная равновесию объемных тел.
От не сохранившихся трактатов Архимеда дошел ряд фрагментов, цитируемых Героном (в «Механике»), Паппом (в «Математической библиотеке») и другими авторами. В частности, Герон приводит длинный отрывок из раннего сочинения Архимеда — «Книги опор». В нем еще нет строгости, присущей зрелым трудам великого сиракузца, и содержится ряд ошибок, относящихся к распределению опорных реакций и показывающих, что в период написания этой книги Архимед еще не знал, что вес тела можно считать сосредоточенным в его центре тяжести.