2. Нетрудно вывести диалектически два основных закона ритма и метра из этих определений. Один закон касается отношения отдельных частей к целому, другой — отношения отдельных частей между собою. Ритм и симметрия возникают как упорядочивание инаковости с точки зрения эйдоса, т. е. мы берем тут эйдос не сам по себе, а эйдос эйдетически упорядоченной инаковости. Но эйдос есть различие. Значит, каждый момент инаковости различен от другого. Эйдос — тождество. Значит, инаковость среди своих моментов должна содержать и тождественные, т. е. она должна их повторить. Допустим, что у нас есть некая инаковость эйдоса; она есть известным образом сокращенный эйдос. Возьмем также и другую инаковость эйдоса, которая будет еще более сокращенный эйдос. Так мы получаем эйдетическое различие в недрах инаковости. Но все эти моменты, несмотря на свое сокращение, все–таки по общим правилам продолжают сохранять в себе целое эйдоса. Момент А различествует с целым, и момент В различествует с целым, и оба — по–разному. Но если в А содержится все целое, то отношение А к целому будет тем же самым, что и отношение В ибо в А тоже заключается все целое. Значит, во–первых, все моменты эйдоса различно относятся к эйдосу и друг к другу, и, во–вторых, все моменты эйдоса относятся тождественно к эйдосу и друг к другу. Отсюда закон так называемого золотого деления, гласящий, что меньшее так относится к большему, как большее к целому. Феноменологическая разгадка этого закона заключается в том, что и в меньшем, и в большем одинаково содержится целое, и что поэтому меньшее и большее, помимо взаимного различия, также и тождественны и между собою, и с целым, и что, значит, целое осталось невредимым как при переходе целого к его большей части, так и при переходе большей части к меньшей части. Однако нельзя сказать, что большее относится к целому так, как меньшее к целому, так как здесь была бы соблюдена только категория различия частей, а диалектика требует, чтобы они были еще и тождественны. Поэтому, поскольку категория различия вполне действительна лишь при условии категории тождества, надо говорить, что целое так относится к большему, как большее к меньшему. Впрочем, вполне справедлива и только что отвергнутая формулировка. Однако она говорит только о том, что созерцаемый нами предмет есть нечто целое, но не говорит, что он есть нечто симметричное. — Итак, закон золотого деления есть необходимое диалектическое условие имени, если его рассматривать с точки зрения самотождественного различия. И если фактически этот закон не всегда выполняется, то это потому, что эйдос есть не только самотождественное различие и что другие моменты в нем способны в сочетании с ним давать нечто такое, что уже не сводится на простой закон золотого деления. Замечу, что этот закон является таковым не только в симметрии, но и в ритме. По крайней мере, диалектически выходит так, что и ритмические акценты должны подчиняться также этому закону, коль скоро мы выдвинем на первый план подвижной покой инаковости [260]