Читаем Античный космос и современная наука полностью

5. Но мы находимся в пределах тетрактиды А, а здесь, как мы видели, необходимо признавать максимальную, а именно бесконечную, выраженность (ибо не переходящую в инобытийность) и имя как предел всякого возможного выражения. Это заставляет нас несколько модифицировать только что полученные категории. Точка при такой максимальности своего выражения превращается в центр управляемых ею построений, зависящих от того, как будут выражены прочие категории пространства. Линия, становясь принципом максимальной выраженности, и угол, становясь принципом максимальной выраженности, т. е. самотождественное различие, максимально выраженное пространственными средствами, должно дать такую точку, которая бы относительно данной линии всегда пребывала в одинаковом положении, одинаково отличаясь от точек, ограничивающих данную линию. Мы уже говорили, что линия есть различие в пространстве и что самотождественное различие предполагает угол, или координаты, т. е. третью точку, помимо двух, ограничивающих данную линию, относительно которой (точки) линия остается в неизменном положении. Но теперь мы хотим, чтобы тождество было выражено в пространстве максимально. Для этого надо, чтобы тождественное было максимально различно. Третью точку я могу взять и на самой линии. Будет ли это тождеством различия? Конечно, нет, и это потому, что я взял помимо данной линии то, что ничем от нее не отличается, т. е. ничего не взял от нее отличного, и, значит, ничего я и не отождествил. Пусть теперь я беру точку вне линии. Тут, несомненно, я отличаю линию от чего–то другого, т. е. беру нечто отличное от нее. Как теперь сделать, чтобы это отличие было максимальным? Надо для этого провести максимальное отождествление. Но всякую категорию мы условились выражать пространственно. А пространственно отождествить — значит пространственно соединить, т. е. соединить точку вне линии с данной линией опять–таки линией же. Но нам нужно максимальное отождествление. Следовательно, линия, соединяющая нашу точку с основной линией, должна быть кратчайшей, т. е. быть к ней перпендикуляром. Отсюда, прямой угол есть максимальная выраженность самотождественного различия средствами пространства. А прямой угол, в котором стороны равны, т. е. прямоугольный треугольник с равными катетами, есть максимальная выраженность самотождественного различия при помощи пространственной фигуры. В прямоугольном треугольнике будем считать один из катетов линией, выражающей различие. Тогда линией, максимально выражающей тождество, будет другой катет, вернее — образуемый ими прямой угол. Но нам важно еще и то, чтобы тождество ровно настолько отождествляло, насколько произошло различие. Для этого необходимо равенство катетов. Таким образом, прямоугольный и равнобедренный треугольник есть необходимое диалектическое выражение в пространстве категорий самотождественного различия. Всякий случай неравенства катетов будет указывать на расхождение тождества и различия, т. е. отождествляться пространство будет настолько, насколько в себе различается. Отсюда прямоугольные треугольники неравнобедренные [269].

Возьмем теперь максимальную выраженность пространственными средствами категории подвижного покоя. Мы уже видели, что самотождественный покой в пространстве сам по себе есть дуга правильной кривизны. Максимальная выраженность даст, очевидно, круг. В самом деле, круг есть, несомненно, движение, ибо кривизна уже сама по себе есть, как мы говорили, движение, выраженное пространственными средствами. Далее, круг есть и покой, ибо, сколько бы мы ни двигались по кругу, мы все–таки находимся в общем на одном и том же месте, так как сам–то круг по себе не движется. Но круг есть, наконец, и максимум движения и покоя, ибо он имеет постоянную и максимальную, при условии постоянно–тождественной зависимости от единого центра, кривизну [270]

Наконец, максимальная выраженность алогического становления пространственными средствами даст правильные тела, возникающие на основе треугольности и окружности. Таких тел можно образовать только шесть. Из правильных треугольников, т. е. из комбинации двух.треугольников, имеющих каждый неравные катеты, получаются: 1) тетраэдр, или правильный четырехгранник, 2) октаэдр, или правильный восьмигранник, и 3) икосаэдр, или правильный двадцатигранник. Из квадрата, т. е. из комбинации двух равнокатетных треугольников, образуется только 4) куб, или правильный шестигранник. Из правильных пятиугольников, т. е. из тройной комбинации косоугольных треугольников, образуется также только одна фигура, 5) додекаэдр, или правильный двенадцатигранник. Наконец, из круга, путем телесной модификации, получается 6) шар.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже