Читаем Антихрупкость. Как извлечь выгоду из хаоса полностью

Работая трейдером, я заметил – и эта идея меня не отпускала, – что значения корреляций на разных временных промежутках никогда не совпадают. Нестабильные – это для них слишком мягкое слово: 0,8 в течение одного долгосрочного периода превращается в —0,2 в течение другого долгосрочного периода. Лохотрон чистой воды. Когда рынок напряжен, корреляции меняются еще быстрее – без какой-либо очевидной регулярности, несмотря на все попытки смоделировать «кризисные корреляции». Taleb (1997) изучает эффект стохастических корреляций: чувствовать себя в безопасности может лишь тот, кто играет на понижение при корреляции 1 и покупает при —1 – что вполне соответствует эвристическому правилу 1/n.

Критерий Келли против Марковица. Чтобы применить оптимизацию а-ля Марковиц во всей ее полноте, необходимо знать полное совместное распределение вероятностей всех активов до конца времен – плюс точную функцию полезности для благосостояния до конца времен. И без погрешностей! (Мы видели, что погрешность оценки взрывает систему.) Метод Келли, разработанный почти одновременно с теорией Марковица, не требует ни совместного распределения, ни функции полезности. На практике инвестору нужно знать соотношение ожидаемой прибыли к отдаче в худшем случае – динамически скорректированное, чтобы избежать катастрофы. В случае с трансформациями штанги худшая отдача гарантирована. И ошибка модели для критерия Келли куда меньше. См. Thorp (1971, 1998), Haigh (2000).

Замечательный Аарон Браун считает, что экономисты отвергли идеи Келли – невзирая на их практическую привлекательность, – из-за любви к общим теориям ценообразования.

Ограниченный метод проб и ошибок совместим с критерием Келли, когда инвестор имеет представление о потенциальной отдаче. Даже если нельзя сказать, какой будет отдача, в случае, если потери ограничены, результат будет неуязвим, так что этот метод должен превзойти теорию хрупкодела Марковица.

Корпоративные финансы. Если коротко, корпоративные финансы обычно прогнозируются точечно, а не дистрибутивно. Если мы введем, скажем, в модель оценки Гордона неустойчивый прогноз денежных потоков, заменив заданный – и известный – рост (и другие параметры) постоянно скачущими переменными (особенно при распределениях с жирными хвостами), предполагаемая стоимость компаний, которые считаются дорогими или растут быстро, но зарабатывают мало, может значительно повыситься. Рынок оценивает их именно так эвристически, без какой-либо явной причины.

Заключение и вывод. Истеблишмент экономической науки так и не понял, что если у нас имеется работающая модель (а это крайне великодушное предположение), но мы не уверены в ее параметрах, это неизбежно приведет к увеличению хрупкости в условиях выпуклости и нелинейности.

<p>Забудьте о маленьких вероятностях</p></span><span>

Теперь – самая суть, касающаяся не только экономики: поговорим о более общей проблеме – о вероятностях и ошибках в их измерении.

<p>Как жирные хвосты (Крайнестан) возникают из-за нелинейных реакций на параметры модели</p></span><span>

У редких событий есть особенное свойство, которое сейчас никем не учитывается. Мы работаем с ними, используя модель, математический механизм: на входе в него закладываются параметры, а на выходе получается вероятность. Чем меньше у нас уверенности в точном значении параметров для подобных моделей, тем больше мы склонны недооценивать маленькие вероятности. Проще говоря, маленькие вероятности выпуклы в отношении ошибочных вычислений точно так же, как полет на самолете вогнут в отношении ошибок и пертурбаций (как мы помним, самолеты опаздывают, а не прилетают раньше срока). При этом чем больше источников пертурбаций мы забываем учесть, тем дольше будет лететь самолет по сравнению с нашей наивной оценкой времени в полете.

Перейти на страницу:

Похожие книги

Викиномика
Викиномика

Это знаменитый бестселлер, который научит вас использовать власть массового сотрудничества и покажет, как применять викиномику в вашем бизнесе. Переведенная более чем на двадцать языков и неоднократно номинированная на звание лучшей бизнес-книги, "Викиномика" стала обязательным чтением для деловых людей во всем мире. Она разъясняет, как массовое сотрудничество происходит не только на сайтах Wikipedia и YouTube, но и в традиционных компаниях, использующих технологии для того, чтобы вдохнуть новую жизнь в свои предприятия.Дон Тапскотт и Энтони Уильямс раскрывают принципы викиномики и рассказывают потрясающие истории о том, как массы людей (как за деньги, так и добровольно) создают новости, изучают геном человека, создают ремиксы любимой музыки, находят лекарства от болезней, редактируют школьные учебники, изобретают новую косметику, пишут программное обеспечение и даже строят мотоциклы.Знания, ресурсы и вычислительные способности миллиардов людей самоорганизуются и превращаются в новую значительную коллективную силу, действующую согласованно и управляемую с помощью блогов, вики, чатов, сетей равноправных партнеров и личные трансляции. Сеть создается заново с тем, чтобы впервые предоставить миру глобальную платформу для сотрудничества

Дон Тапскотт , Энтони Д. Уильямс

Деловая литература / Интернет / Финансы и бизнес / Книги по IT