Читаем Антимозг: цифровые технологии и мозг полностью

Научение и игра в гольф отличаются друг от друга: при научении неясно, где расположена цель. Чтобы приравнять гольф к обучению, следовало бы играть с завязанными глазами: мяч посылать в неизвестном направлении и получают ответное сообщение, находится ли мяч после этого удара ближе к лунке или дальше от нее («теплее», «холоднее»). При такой манере играть в гольф нерационально было бы посылать мяч все время осторожно, на расстояние одного-двух метров. Если же представить себе, что головной мозг ребенка должен посылать не один мяч в одну лунку на одном поле для гольфа, а одновременно играть на тысяче полей (учиться всему подряд и одновременно), тогда станет ясно, что головной мозг не может действовать и так, и эдак, то есть делать первый удар осторожно, затем более сильный удар, потом опять осторожный и так далее. Для одновременного выполнения множества задач обучения можно следовать только очень простой стратегии: мозг учится сначала очень многому с каждым индивидуальным опытным переживанием, и таким способом быстро приближается к истине, а затем выполняет все меньшие шаги. Быстрота юности и медленность (и точность) зрелого возраста — не случайность и уж тем более не следствие возрастного заболевания, а проявление оптимизации процессов научения на протяжении всей жизни. Применительно к людям это означает, что люди более старшего возраста лучше знают мир, чем молодые люди — до тех пор, пока мир сохраняет стабильность, то есть не меняется. Говорят о старом мастере с его исключительным опытом. И говорят о том, что дети могут быстро приспосабливаться к самым разнообразным условиям.

7.1. При игре в гольф целесообразно сначала приближаться к цели пусть не очень точными, но сильными ударами, а затем все более слабыми, но более точными движениями мяча (рисунок вверху), чем выбирать всегда одинаковые удары (рисунок внизу).

С этой точки зрения проблему людей старшего возраста в сегодняшнем мире можно описать четко: многие вещи изменяются очень быстро, во многих сферах более нет предпосылок для стабильной окружающей среды. По этой причине люди могут попасть в ситуацию, когда в течение жизни их ценности теряют значение, а приобретенные ими способности становятся ненужными. Шестидесятилетний скрипичный мастер делает инструменты лучше, чем сорокалетний, но если он должен переключиться на изготовление синтезаторов, то он проиграет.

Значит ли это, что взрослые вовсе не могут больше учиться? Нет! Они учатся иначе, чем маленькие дети, а именно, путем присоединения нового к уже изученным раньше вещам. Как уже было изложено в первых главах, ребенок выучивает новые сведения, формируя следы памяти и тем самым внутреннюю структуру механизма память; взрослый же учится, обращаясь к существующим структурам и связывая их. Обучение у детей — не то же самое, что обучение у взрослых. Дети развивают новые структуры; взрослые используют имеющиеся структуры и тем самым изменяют их.

<p>Что именно растет, когда растет головной мозг?</p></span><span>

Головной мозг новорожденного представляет собой примерно одну четвертую часть (350 г) от веса и размера головного мозга взрослого человека (1300–1400 г); хотя и нервные клетки, и их соединительные волокна уже сформированы, и их количество после рождения увеличивается лишь незначительно. Головной мозг становится таким большим в процессе развития главным образом благодаря жиру. При этом речь идет об особенной разновидности жира, миелине, которым так называемые Шванновские клетки облекают нервные волокна. Эта миелиновая оболочка нервных волокон способствует тому, что импульсы не проходят медленно (макс. 3 м/с) вдоль нервного волокна, а быстро прыгают вдоль них (макс. 115 м/с). Это важно потому, что головной мозг имеет модульное строение; он перерабатывает информацию прежде всего благодаря тому, что десятки раз посылает ее туда-сюда между разными модулями, находящимися на расстоянии нескольких сантиметров друг от друга.

Итак, оболочка нервных волокон обеспечивает более быстрые нервные импульсы. Время, необходимое для прохождения импульсов от одного модуля к другому (расстояние порядка 10 см), составляет при скорости 3 м/с примерно 30 мс. Такой промежуток времени кажется коротким, однако для переработки информации, которая в конечном итоге заключается в том, чтобы импульсы многократно перетекали между различными модулями в обоих направлениях, он очень велик. Быстрый обмен между модулями предполагает быстрое проведение импульсов, отсюда получается, что модуль, соединительные волокна которого еще медленные, может внести лишь небольшой вклад в переработку информации или даже вовсе никакого. Медленное соединение нервных волокон в головном мозге можно сравнить с мертвой телефонной линией — физически она присутствует, но на практике бесполезна.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже