Джон Хопфилд был моим научным руководителем в Принстонском университете. Когда я работал с Хопфилдом, он только начал интересоваться нейробиологией. Он был полон энтузиазма и рассказал мне, что узнал на заседаниях Программы исследований в нейробиологии (ПИН), базирующейся в Бостоне, где он слушал лекции других специалистов в данной области. ПИН также опубликовала материалы небольших семинаров, которые были бесценны, так как дали мне представление о том, какие проблемы изучали и какие теории существовали в то время. У меня все еще сохранилась копия семинара по нейронному кодированию, организованного Тедом Баллоком, легендарным нейроэтологом, который позже стал моим коллегой в Калифорнийском университете в Сан-Диего. Книга Теда Баллока и Адриана Хорриджа о нервной системе беспозвоночных стала классикой[150]
. Я работал с Тедом над моделированием поведения коралловых рифов и гордился тем, что был соавтором его последнего научного труда[151].Рис. 7.1. Джон Хопфилд решает задачу на набережной в Вудс-Хоул в штате Массачусетс. В 1980-х годах Хопфилд оказал основополагающее влияние на нейронные сети, изобретя одноименную сеть, которая открыла дверь для глубокого обучения
Нейронные сети с обратными связями с более ранними слоями и циклическими связями между элементами внутри слоя могут иметь гораздо более сложную динамику, чем сети только с прямыми связями. Общий случай сетей с произвольно связанными элементами с положительными (возбуждающими) и отрицательными (тормозящими) весами – сложная математическая задача. Джек Коуэн из Чикагского университета и Стивен Гроссберг из Бостонского университета ранее изучали такие сети и добились прогресса, показав, что нейросети могут воспроизводить зрительные иллюзии[152]
и галлюцинации[153], но проектировать такие сети для решения сложных вычислительных задач было трудно.Сеть с ассоциативной памятью
Летом 1983 года мы с Джеффри Хинтоном были на организованном Джерри Фельдманом семинаре в Рочестерском университете. Джон Хопфилд (рис. 7.1) также там присутствовал. В Рочестере Хопфилд сказал нам, что решил проблему сходимости для сильно взаимодействующей сети. Сильно нелинейные сети склонны к колебаниям или еще более хаотичному поведению. Он доказал, что определенный тип нелинейной сетевой модели, теперь называемой сетью Хопфилда, гарантированно сходится к стабильному состоянию, называемому аттрактором (рис. 7.2, блок 3)[154]
. Кроме того, веса в сети можно выбрать так, чтобы аттракторами были блоки памяти. Таким образом, сеть Хопфилда можно использовать для реализации так называемой ассоциативной памяти. В цифровом компьютере память хранится в ячейках с определенным адресом, но в сети Хопфилда можно получить сохраненную память, обратившись только к ее части, а сеть ее восполнит. Похоже на то, как у нас пробуждаются воспоминания. Если мы видим лицо кого-то, кого мы знаем, мы можем вспомнить его имя и разговоры с этим человеком.Рис. 7.2. Энергетический ландшафт сети Хопфилда. Состояние сети можно представить в виде точки на энергетической поверхности (слева). Каждое обновление приближает состояние к одному из минимумов энергии, называемых состояниями аттрактора (справа)
Сеть Хопфилда уникальной делает то, что она математически всегда сходится (блок 3). Считалось, что невозможно проанализировать общий случай нелинейной сети, но Хопфилд показал, что частный случай симметричной сети, в которой взаимные связи между парами единиц равны по силе, а единицы обновляются последовательно, разрешим. Когда обновления производятся одновременно для всех узлов в сети, динамика может быть гораздо сложнее, и нет никакой гарантии схождения[155]
.Появляется все больше доказательств того, что нейронные сети в гиппокампе – части мозга, которая необходима для хранения долгосрочных воспоминаний о событиях и уникальных объектах, – имеют аттракторные состояния, подобные тем, которые находятся в сети Хопфилда[156]
. Хотя модель сильно абстрагирована, ее качественное поведение похоже на то, что наблюдается в гиппокампе. Сети Хопфилда стали мостом от физики к нейробиологии, который многие физики протянули в 1980-х годах. Удивительные открытия были получены при анализе нейронных сетей и алгоритмов обучения с помощью сложных инструментов из теоретической физики. Связи между физикой, вычислениями и обучением глубоки и являются одной из областей нейробиологии, где теория успешно объясняет функционирование мозга.Блок 3. Сеть Хопфилда
В сети Хопфилда от каждого блока идет выходной канал ко всем блокам в сети. Входы обозначены как xi
, а выходы – yj. Сила соединений или веса симметричны: wij=wji. На каждом временном шаге одна из единиц обновляется путем суммирования входов и сравнения с порогом: если входы превышают порог, выход равен 1, в противном случае – 0. Хопфилд показал, что сеть имеет энергетическую функцию, которая никогда не увеличивается с каждым обновлением объекта в сети: