Примечательно, что синапсы в коре головного мозга исключаются с высокой скоростью. На каждый входной импульс приходится 90 процентов отказов обычного возбуждающего синапса[201]
. Это похоже на бейсбольную команду, где почти все игроки имеют средний уровень 100[202]. Как мозг может стабильно функционировать с такими ненадежными кортикальными синапсами? Когда в нейроне тысячи вероятностных синапсов, вариабельность их суммарной активности относительно невысока[203], так что производительность не падает так сильно, как вы можете себе представить. Польза от обучения с использованием исключения на уровне синапсов может перевешивать затраты на снижение точности. Исключение также экономит энергию, так как работа синапсов дорого обходится. Наконец, кора головного мозга применяет вероятности для вычисления предполагаемых результатов, а не точных, и для этого эффективно использование вероятностных компонентов.Хотя кортикальные синапсы могут быть ненадежными, они удивительно точны в своей силе[204]
. Размеры кортикальных синапсов и, соответственно, их сила различаются более чем в сотню раз, и в этих пределах сила отдельных синапсов может быть увеличена или уменьшена. Недавно моя лаборатория совместно с Кристен Харрис, нейроанатомом из Техасского университета в Остине, воссоздала небольшой фрагмент крысиного гиппокампа – области мозга, необходимой для формирования долговременных воспоминаний, – которая содержала 450 синапсов. Чаще всего это были одиночные синапсы на дендритных ветвях, но в ряде случаев два синапса от одного аксона передавали сигналы одному и тому же дендриту. К нашему удивлению, они были почти идентичны по размеру, а значит, как мы знали из предыдущих исследований, одинаковы по силе. Многое известно об условиях, которые приводят к изменению силы синапсов в зависимости от истории входных импульсов и соответствующей электрической активности дендритов, одинаковых для парных синапсов. Из этих наблюдений мы сделали вывод, что точность хранения информации в силе синапсов значительная – не меньше пяти бит на синапс. Любопытно, что для достижения высокого уровня производительности алгоритмам обучения глубоких рекуррентных сетей требуется всего пять бит[205]. Это может не быть совпадением[206].Степень размерности сетей в мозге настолько высока, что мы даже не можем точно оценить ее. Общее количество синапсов в коре головного мозга – около ста триллионов, астрономически высокая грань. Человеческая жизнь длится не более нескольких миллиардов секунд. Таким образом, вы можете позволить себе посвящать сто тысяч синапсов каждой секунде своей жизни. На деле у нейронов, как правило, кластеризованные локальные соединения. Например, в кортикальном столбце сто тысяч нейронов соединены миллиардом синапсов – число довольное большое, но все же не заоблачное. Длинные соединения куда менее распространены, потому что требуют много места и энергии.
Число нейронов, которое нужно, чтобы представить в мозге объект или понятие, важно, и его необходимо определить. Предположительно требуется около миллиарда синапсов и около ста тысяч нейронов, распределенных по десяти кортикальным областям[207]
, что позволяет хранить около ста тысяч отдельных классов объектов и понятий в ста триллионах синапсов, что сходно с количеством слов в английском языке[208]. На практике популяции нейронов, представляющих схожие объекты, перекрываются, благодаря чему растет способность коры головного мозга представлять связанные объекты и отношения между объектами. У человека эта способность развита намного лучше, чем у других млекопитающих, из-за сильно увеличенной ассоциативной коры, которая находится на вершине сенсорной и моторной иерархий.Изучение вероятностных распределений в многомерных пространствах было относительно неисследованной областью статистики. Несколько ученых-статистиков из сообщества NIPS, таких как Лео Брейман из Стэнфордского университета, исследовали статистические проблемы, возникающие при навигации по пространствам с высокой размерностью и многомерным наборам данных. Некоторых из сообщества NIPS, например, Майкла Джордана из Калифорнийского университета в Беркли, приняли на работу в отдел статистики. В эпоху больших данных машинное обучение шагало там, куда статистики не решались ступать. Однако недостаточно просто обучить крупные сети делать удивительные вещи – нужно их проанализировать и понять, почему они эффективны. Физики взяли на себя инициативу на этом фронте, используя методы из статистической физики для анализа свойств обучения по мере того, как число нейронов и синапсов становится запредельно большим.
Ограничения нейронных сетей