где rt
– текущее вознаграждение. Изменение каждого веса определяется:где α – скорость обучения. Если вознаграждение больше, чем предсказанное вознаграждение, и δ
Поскольку единственное реальное вознаграждение появляется в конце игры, логично ожидать, что программа TD-Gammon сначала изучит конец игры, затем середину и, наконец, ее начало. Это как раз то, что происходит в табличном обучении с подкреплением, где есть таблица значений для каждого состояния в пространстве состояний. Однако с нейронными сетями все иначе – они быстро хватаются за простые и надежные сигналы входных функций, а более сложные и сомнительные входные сигналы оставляют на потом. Первый принцип, который изучает TD-Gammon, – «выбрасывать фишки», придавая положительный вес входному элементу, который представляет собой количество снятых с доски фишек. Второй принцип – «блокировать фишки противника» – довольно эффективный способ практического решения проблемы на всех этапах, выученный путем присвоения положительного веса входному блоку, отмечающему количество заблокированных фишек противника. Третий принцип – «избегать блокировки» – естественная реакция на второй, и он изучается через придание отрицательного веса отдельным фишкам, которые могут быть заблокированы. Четвертому принципу – «занимать новые лунки», блокируя продвижение противника, – учат, назначая положительные веса уже занятым точкам. Для закрепления этих базовых принципов требуется несколько тысяч обучающих игр. За десять тысяч игр TD-Gammon изучила основные принципы. За сто тысяч – освоила продвинутый подход, а к миллиону игр ее методы достигли уровня чемпионов мира или вообще находились за пределами знаний людей начала 1990-х годов.
Когда в 1992 году TD-Gammon была представлена миру, она впечатлила и меня, и многих других[253]
. Функция стоимости представляла собой сеть обратного распространения ошибки с 80 скрытыми единицами. После 300 тысяч игр программа начала обыгрывать Джерри, поэтому он связался с известным игроком в нарды и автором книг о них Биллом Роберти и пригласил его посетить IBM, чтобы сыграть с TD-Gammon. Роберти выиграл в большинстве случаев, но, к своему удивлению, проиграл несколько хороших партий и заявил, что это лучшая программа для игры в нарды, с которой он когда-либо состязался. Некоторые из ее ходов были необычными, которые он никогда ранее не видел, и при ближайшем рассмотрении оказалось, что это улучшило игру человека. Роберти вернулся, когда программа сыграла сама с собой 1,5 миллиона партий, и был поражен, когда их встреча с TD-Gammon закончилась вничью. Программа стала настолько лучше, что, по его ощущениям, достигла уровня чемпионов. Специалист по нардам Кит Вулси заметил, что выбор «безопасной» (с низкими рисками и высокой вероятностью награды) или «смелой» (с высокими рисками и также большой вероятностью награды) стратегии игры у TD-Gammon лучше, чем у любого человека. Может показаться, что 1,5 миллиона обучающих игр – это очень много, но программа узнала из них лишь малую часть из ста квинтильонов (100 000 000 000 000 000 000) возможных позиций на доске, что требовало от TD-Gammon обобщения для новых позиций почти на каждом ходу.TD-Gammon не получила такой широкой известности, как суперкомпьютер Deep Blue от IBM, который в 1997 году обыграл Гарри Каспарова в шахматы. Шахматы намного сложнее, а Каспаров в то время был чемпионом мира. Однако в некотором смысле TD-Gammon была более впечатляющим достижением. Во-первых, Deep Blue использовали специальное оборудование, чтобы просчитывать большее количество ходов, чем любой человек, побеждая «грубой силой»[254]
. Для сравнения, TD-Gammon научилась играть, используя распознавание образов – стиль, более похожий на то, как играют люди. Во-вторых, TD-Gammon проявляла изобретательность и придумывала хитрые стратегии и позиционную игру, которые раньше никто не видел, и тем самым подняла уровень человеческой игры. Это достижение стало переломным в истории ИИ, потому что мы узнали что-то новое от программы, которая сама освоила сложную стратегию в хорошо изученной области, что достойно человеческого интереса и усилий.Обучение мозга методом вознаграждения