За десятую долю секунды десять миллиардов нейронов в зрительной коре, работающие параллельно, могут идентифицировать чашку среди большого количества предметов, даже если вы никогда раньше не видели именно эту чашку. Она может быть в любом месте, любого размера и в любом положении по отношению к вам. Я, будучи аспирантом в Принстонском университете, был очарован зрительной системой и работал все лето в лаборатории Чарльза Гросса, который изучал нижневисочную кору у обезьян. Эта зона находится на одной из самых высоких ступеней в иерархии областей коры головного мозга (рис. 5.1), и Гросс обнаружил в ней нейроны, которые реагируют на сложные объекты, такие как лица и, что примечательно, ершики для унитаза[103]
.Штефан Куффлер, с которым я работал на факультете нейробиологии в Гарвардской медицинской школе, обнаружил, как ганглиозные клетки в сетчатке кодируют визуальные сцены. Я работал там, когда Дэвид Хьюбел и Торстен Визель получили Нобелевскую премию по физиологии или медицине в 1981 году за фундаментальные открытия в области зрительной коры головного мозга. Штефан Куффлер, возможно, получил бы премию вместе с ними за исследования сетчатки, но он умер в 1980 году, а чтобы получить Нобелевскую премию, нужно быть живым. В конце концов я перебрался в Институт биологических исследований Солка, где Фрэнсис Крик сосредоточился на зрении, когда в 1977 году решил перейти от молекулярной генетики к мозгу. Его целью было найти минимально необходимый набор нейронов для зрительного восприятия. Мне выпала честь быть в компании величайших ученых моего времени, работающих в области зрения.
Рис. 5.1. Схема потока информации через зрительную систему макаки. Стрелки указывают схему передачи визуальной информации между зрительными зонами, начиная с сетчатки, с задержками в миллисекундах на каждом этапе ее обработки. Зрительное восприятие макаки схоже с нашим, и эти этапы у нас одинаковые. LGN: Латеральное коленчатое тело; V1: Первичная зрительная кора; V2: Вторичная зрительная кора; AIT и PIT: передние и задние части височных долей; PFC: префронтальная кора; PMC: премоторная кора; MC: моторная кора. [Thorpe, SJ, Fabre-Thorpe, M, Seeking Categories in the Brain, Science 291: 260–263 (2001)].
Схема работы зрения
Давайте проследим сигналы, возникающие в мозге при взгляде на картинку, и посмотрим, как они последовательно трансформируются снова и снова по мере того, как переходят из одной стадии на другую (рис. 5.1). Зрительная система начинается с сетчатки, где фоторецепторы превращают свет в электрические сигналы. В сетчатке два слоя нейронов, которые обрабатывают визуальные сигналы в пространстве и времени и заканчиваются ганглиозными клетками, выходящими из зрительного нерва.
В 1953 году Штефан Куффлер (рис. 5.2) записал данные с выходных нейронов сетчатки кошки и одновременно стимулировал их ответ на пятна света. Он отметил, что сигналы на выходе двух видов: одни реагировали на появление пятна света в их центре, а другие — на его смещение. Однако окружающие центры кольца имели противоположную полярность: положительный центр и отрицательное кольцо, и наоборот (рис. 5.3). Такая реакция на свет как раздражитель — свойство рецептивного поля ганглиозных клеток. Это классический эксперимент, результаты которого применимы ко всем млекопитающим.
Рис. 5.2. Слева направо: Штефан Куффлер, Торстен Визель и Дэвид Хьюбел. Факультет нейробиологии в Гарвардской медицинской школе был основан в 1966 году, фотография сделана в самом начале его существования. Я ни разу не видел их за работой в лаборатории в галстуках, так что это, скорее всего, был особый случай.
Рис. 5.3. Особенности отклика ганглиозных клеток сетчатки. Два кольца на изображении показывают реакцию двух типов ганглиозных клеток сетчатки, которые посылают закодированные сообщения в мозг, чтобы вы могли видеть. Для типа с ON-центром появление пятна света в центре (+) вызывает всплеск импульсов, а в кольце вокруг центра (−) приводит к подавлению активности. И наоборот для клеток с OFF-центром: появление пятна света в центре (−) подавляет реакцию, а в кольце вокруг центра (+) — получает бурный отклик. Изменения освещения несут важную информацию о перемещениях объекта-раздражителя и его четких границах. Эти свойства были обнаружены Штефаном Куффлером в 1953 году.
Я однажды спросил Куффлера, что подвигло его исследовать сетчатку, так как его основной научный интерес был сосредоточен на свойствах синапсов между нейронами. Он сказал, что в то время его лаборатория находилась в Институте офтальмологии Уилмера при Университете Джонса Хопкинса, и он чувствовал себя виноватым из-за того, что его работа не была связана со зрением. Начав исследование отдельных ганглиозных клеток в сетчатке, он передал проект двум научным сотрудникам своей лаборатории, Дэвиду Хьюбелу и Торстену Визелю (см. рис. 5.2) и посоветовал им проследить, как передаются сигналы мозгу. В 1966 году Куффлер и его аспиранты переехали в Гарвардскую медицинскую школу, открыв там кафедру нейробиологии.