Читаем Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет полностью

Функциональная МРТ измеряет гемодинамический ответ (изменение кровотока), связанный с активностью нейронов. Мозг не будет работать без кислорода, а кровоток четко регулируется на субмиллиметровом[122] уровне. Степень насыщения крови кислородом изменяет ее магнитные свойства, которые можно бесконтактно измерять с помощью МРТ и использовать для создания динамической картины активности мозга с временны́м разрешением в несколько секунд — достаточно хорошим, чтобы отследить, какие части мозга активны во время эксперимента. Функциональная МРТ используется для изучения времени прохождения сигнала в различных частях иерархии зрительной системы.

Ури Хэссон из Принстонского университета провел эксперимент с фМРТ, призванный выяснить, какие части иерархии зрительной системы участвуют в обработке видеозаписей различной длительности[123]. Немой фильм Чарли Чаплина был разрезан на кусочки, собран в ролики продолжительностью 4, 12 и 36 секунд и продемонстрирован участникам эксперимента. В 4-секундном ролике зрители успевали распознать сцену, в 20-секундном — последовательность действий, а в 36-секундном — целую историю от начала до конца. Отклики фМРТ в V1 в нижней части иерархии были сильными и устойчивыми, независимо от временной шкалы, но на более высоких уровнях визуальной иерархии только более длинные временные шкалы вызывали стабильный отклик, а области префронтальной коры в верхней части иерархии требовали самого длинного временного интервала. Это согласуется с другими экспериментами, показывающими, что кратковременная память — ваша способность удерживать информацию, такую как телефонные номера и элементы задачи, над которым вы работаете, — также организована в иерархии с самыми длинными временными шкалами кратковременной памяти в префронтальной коре.

Изучать, как происходят процессы обучения в человеческом мозге, — одно из самых увлекательных направлений исследований в нейробиологии, над которым можно работать на разных уровнях, от молекулярного до поведенческого.

Часть II

Множество способов обучения: хронология

1949 — Дональд Хебб выпустил книгу «Организация поведения»[124], в которой сформулировал правило пластичности синапса.

1982 — Джон Хопфилд опубликовал труд «Нейронные сети и физические системы с возникающими коллективными вычислительными способностями»[125], в котором описал нейросеть Хопфилда.

1985 — Джеффри Хинтон и Терри Сейновски представили «Алгоритм обучения для машин Больцмана»[126], что стало контрдоказательством широко распространенного мнения Минского и Пейперта, что алгоритм обучения для многослойных сетей невозможен.

1986 — Дэвид Румельхарт и Джеффри Хинтон написали «Обучение внутреннего представления путем распространения ошибки»[127], где описали алгоритм обратного распространения ошибки, который используется для глубокого обучения в наши дни.

1988 — Ричард Саттон напечатал статью «Обучение прогнозированию методами временных различий»[128] в журнале «Машинное обучение». Он был вдохновлен сутью ассоциативного обучения, и обучение с учетом временной разности стало считаться основным алгоритмом для обучения мозга методом вознаграждения.

1955 — Тони Белл и Терри Сейновски опубликовали труд «Подход к максимизации информации для слепого разделения и слепой обратной свертки»[129], в котором описали неконтролируемый алгоритм для анализа независимых компонентов.

2013 — Работа Джеффри Хинтона «Классификация Image Net с глубокими сверточными нейросетями»[130] позволила на 18 % снизить частоту ошибок при классификации объектов на изображениях.

2017 — сеть глубокого обучения Alpha Go победила Кэ Цзе на Чемпионате мира по го.

Глава 6

Проблема коктейльной вечеринки

На коктейльной вечеринке бывает сложно расслышать, что говорит человек рядом с тобой, среди какофонии других голосов вокруг. Наличие пары ушей помогает направить ваш слух в нужном направлении, и ваша память может заполнить недостающие обрывки разговора. Теперь вообразите шумную вечеринку с сотней людей в комнате и сотней ненаправленных микрофонов, которые собирают звуки ото всех, но с различным соотношением амплитуд для каждого человека на каждом микрофоне. Можно ли разработать алгоритм, который сумеет разделить голоса на отдельные выходные каналы? Чтобы усложнить задание, подумайте, что делать, если источники звука неизвестны — например, музыка, хлопки, звуки природы или даже случайный шум? Это называется проблемой слепого разделения сигналов (рис. 6.1).

Перейти на страницу:

Похожие книги

Как справиться с компьютерной зависимостью
Как справиться с компьютерной зависимостью

Компьютер так прочно вошел в нашу жизнь, что большая половина человечества не может представить без него своего существования. Мы проводим за ним не только все рабочее, но и свободное время. Однако не каждый человек знает, что круглосуточное пребывание за монитором несет реальную угрозу как физическому (заболевания позвоночника, сердечно-сосудистой системы и т. д.), так и психическому здоровью (формирование психической зависимости от Интернета и компьютерных игр). С помощью данной книги вы сможете выявить у себя и своих близких признаки компьютерной зависимости, понять причины и механизмы ее возникновения и справиться с ней посредством новейших психологических методик и упражнений.

Виктория Сергеевна Тундалева , Елена Вячеславовна Быковская , М О Носатова , Н Р Казарян , Светлана Викторовна Краснова

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT
Цифровой журнал «Компьютерра» № 24
Цифровой журнал «Компьютерра» № 24

ОглавлениеБольшие новостиMicrosoft BizSpark: поиски инвесторов и менторов Автор: Григорий РудницкийNASA открыло виртуальную лунную базу Автор: Михаил КарповТерралабПромзона: Катушка с лупой Автор: Николай МаслухинPixel Qi: дисплеи, не слепнущие на солнце Автор: Юрий ИльинПромзона: Батарейки Microsoft Автор: Николай МаслухинСофт: Process Explorer — порнобаннер в прицеле Автор: Николай МаслухинSynaptics: тачпады нового поколения Автор: Олег НечайПромзона: Очки-суфлер Автор: Николай МаслухинМобильный интернет для малого бизнеса Автор: Максим БукинВещь дня: беззеркальная камера Lumix G2 Автор: Андрей ПисьменныйHDBaseT 1.0: дешёвая замена HDMI Автор: Олег НечайПромзона: Воздушный холодильник Автор: Николай МаслухинСофт: Настраиваем Ubuntu с помощью Ubuntu Tweak Автор: Крестников ЕвгенийПромзона: Бескрайний бассейн Автор: Николай МаслухинСпособы обмана в мобильных сетях Автор: Максим БукинСвоя играВасилий Щепетнёв: О пользе словаря Автор: Василий ЩепетневКивино гнездо: Человек против обмана Автор: Берд КивиMicrosoft: что пошло не так Автор: Андрей ПисьменныйКафедра Ваннаха: Скольжение к сингулярности Автор: Ваннах МихаилВасилий Щепетнёв: Гамбит Форт-Росс Автор: Василий ЩепетневКафедра Ваннаха: Облачное программирование и Пуэрто-Рико Автор: Ваннах МихаилВасилий Щепетнёв: Следы на целлулоиде Автор: Василий ЩепетневКивино гнездо: Конфликт криптографии и бюрократии Автор: Берд КивиИнтерактивЛюдмила Булавкина, директор YouDo по маркетингу, о любительском контенте Автор: Юрий ИльинМакс Зацепин и Глеб Никитин о музыкальной игре для iPad Автор: Юрий ИльинСергей Матиясевич (3D Bank) о рынке трёхмерных моделей Автор: Юрий ИльинВ. Репин (ИХБФМ СО РАН) о бактерии из вечной мерзлоты Автор: Алла АршиноваДмитрий Завалишин об операционной системе «Фантом» Автор: Андрей ПисьменныйБлогиАнатолий Вассерман: «Марс-500» Автор: Анатолий ВассерманКак большой оператор споткнулся о маленького SaaS-провайдера Автор: Анисимов КонстантинАнатолий Вассерман: Дальневосточные «партизаны» Автор: Анатолий ВассерманГолубятня-ОнлайнГолубятня: Сидр №4 Автор: Сергей ГолубицкийГолубятня: Бедность Автор: Сергей Голубицкий

Журнал «Компьютерра»

Зарубежная компьютерная, околокомпьютерная литература