Читаем Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет полностью

В 1997 году Зепп Хохрайтер и Юрген Шмидхубер нашли способ преодолеть проблему распада, который они назвали сетью долгой краткосрочной памяти (Long short-term memory; LSTM)[230]. Основная идея в том, чтобы передать информацию в будущее без потерь, как в период задержки в префронтальной коре мозга обезьяны. В сети LSTM есть сложная схема для принятия решения, как именно объединять новую входящую информацию со старой. Как следствие, растянутые во времени взаимосвязи сохраняются выборочно. Эта версия рабочей памяти не использовалась в течение 20 лет, пока не была воскрешена и реализована в сетях глубокого обучения, где оказалась очень успешной во многих областях, зависящих от последовательности обучения входов и выходов, включая видеоролики, музыку, движения и речь.

Шмидхубер — один из руководителей Института исследований искусственного интеллекта Далле Молле в Манно, крошечном городке в районе Тичино на юге Швейцарии, недалеко от лучших туристических троп в Альпах[231]. Он как Родни Дейнджерфилд[232] в области нейронных сетей. Он изобретательный и единственный в своем роде, однако не считает, что его достаточно уважают: на конференции NIPS в 2015 году в Монреале он представился из зала как «снова ты, Шмидхубер».



Рис. 9.4. Подписи к изображениям глубокого обучения. Верхний ряд иллюстрирует процедуру анализа фотографии. На первом этапе сверточная нейронная сеть помечает объекты на фотографии и передает их рекуррентной нейронной сети. Рекуррентная сеть была обучена выводить соответствующую строку английских слов. Четыре картинки внизу иллюстрируют дальнейшее уточнение, которое использует внимание (белое облако), чтобы соотнести слова и фотографии (arxiv.org/abs/1502.03044, 2015).


На конференции в 2016 году в Барселоне он пять минут донимал спикера, который не уделил достаточного внимания его идеям. В этом весь Шмидхубер. В 2015 году сеть глубокого обучения для распознавания объектов на изображениях была объединена с сетью LSTM для подписи изображений. Входной сигнал в сеть LSTM проходит первичную обработку в сети глубокого обучения, которая определяет все объекты на изображении. Сеть LSTM была обучена выводить строку английских слов, которые описывают изображение (рис. 9.4), а также определять место на изображении, соответствующее слову. Впечатляющим это приложение делает то, что сеть LSTM никогда не обучали понимать смысл предложения — только выводить синтаксически правильную строку слов на основе объектов и их расположения на рисунке. Вместе с NETtalk, приведенной в примере в главе 8, это еще раз доказывает, что нейросети, похоже, связаны с речью, хотя мы пока не понимаем почему. Возможно, в результате анализа сетей LSTM появится новая теория языка, которая прольет свет как на работу нейросетей, так и природу естественного языка.

Порождающие состязательные сети[233]

В главе 7 машина Больцмана была представлена как порождающая модель, умеющая создавать новые входные выборки, когда выходные данные ограничены категорией, которую она обучена распознавать, и шаблоны активности проникают на входной слой. Йошуа Бенджио и его коллеги из Университета Монреаля показали, что можно обучить сети прямого распространения создавать еще более качественные образцы в обстоятельствах состязания[234]. Порождающую сверточную сеть может научить синтезировать хорошие примеры изображений в попытке обмануть другую сверточную сеть, которая должна решить, являются ли входные данные настоящим изображением или поддельным (рис. 9.5). Выходные данные порождающей сети поступают как входные данные дискриминантной сверточной сети, обученной выдавать один выходной сигнал: 1, если входные данные — реальное изображение, и 0 — если поддельное. Эти две сети конкурируют друг с другом. Порождающая сеть пытается увеличить частоту ошибок дискриминантной сети, которая пытается их уменьшить. Конфликт между двумя целями создает удивительные фотореалистичные изображения (см. рис. 9.5).



Рис. 9.5. Порождающие состязательные сети. Вверху: сверточная сеть используется для создания выборки изображений, предназначенных обманывать дискриминативную сеть. Входные данные слева — 100-мерные непрерывные векторы, выбранные случайным образом для генерирования различных изображений. Затем входной вектор активирует слои фильтров, все больше увеличивая пространственный масштаб. Внизу: пример изображений, созданных GAN, после обучения на фотографиях из одной категории. [Alec Radford, Luke Metz, Soumith Chintala, Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, arXiv:1511.06434, 2016.].


Перейти на страницу:

Похожие книги

Как справиться с компьютерной зависимостью
Как справиться с компьютерной зависимостью

Компьютер так прочно вошел в нашу жизнь, что большая половина человечества не может представить без него своего существования. Мы проводим за ним не только все рабочее, но и свободное время. Однако не каждый человек знает, что круглосуточное пребывание за монитором несет реальную угрозу как физическому (заболевания позвоночника, сердечно-сосудистой системы и т. д.), так и психическому здоровью (формирование психической зависимости от Интернета и компьютерных игр). С помощью данной книги вы сможете выявить у себя и своих близких признаки компьютерной зависимости, понять причины и механизмы ее возникновения и справиться с ней посредством новейших психологических методик и упражнений.

Виктория Сергеевна Тундалева , Елена Вячеславовна Быковская , М О Носатова , Н Р Казарян , Светлана Викторовна Краснова

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT
Цифровой журнал «Компьютерра» № 24
Цифровой журнал «Компьютерра» № 24

ОглавлениеБольшие новостиMicrosoft BizSpark: поиски инвесторов и менторов Автор: Григорий РудницкийNASA открыло виртуальную лунную базу Автор: Михаил КарповТерралабПромзона: Катушка с лупой Автор: Николай МаслухинPixel Qi: дисплеи, не слепнущие на солнце Автор: Юрий ИльинПромзона: Батарейки Microsoft Автор: Николай МаслухинСофт: Process Explorer — порнобаннер в прицеле Автор: Николай МаслухинSynaptics: тачпады нового поколения Автор: Олег НечайПромзона: Очки-суфлер Автор: Николай МаслухинМобильный интернет для малого бизнеса Автор: Максим БукинВещь дня: беззеркальная камера Lumix G2 Автор: Андрей ПисьменныйHDBaseT 1.0: дешёвая замена HDMI Автор: Олег НечайПромзона: Воздушный холодильник Автор: Николай МаслухинСофт: Настраиваем Ubuntu с помощью Ubuntu Tweak Автор: Крестников ЕвгенийПромзона: Бескрайний бассейн Автор: Николай МаслухинСпособы обмана в мобильных сетях Автор: Максим БукинСвоя играВасилий Щепетнёв: О пользе словаря Автор: Василий ЩепетневКивино гнездо: Человек против обмана Автор: Берд КивиMicrosoft: что пошло не так Автор: Андрей ПисьменныйКафедра Ваннаха: Скольжение к сингулярности Автор: Ваннах МихаилВасилий Щепетнёв: Гамбит Форт-Росс Автор: Василий ЩепетневКафедра Ваннаха: Облачное программирование и Пуэрто-Рико Автор: Ваннах МихаилВасилий Щепетнёв: Следы на целлулоиде Автор: Василий ЩепетневКивино гнездо: Конфликт криптографии и бюрократии Автор: Берд КивиИнтерактивЛюдмила Булавкина, директор YouDo по маркетингу, о любительском контенте Автор: Юрий ИльинМакс Зацепин и Глеб Никитин о музыкальной игре для iPad Автор: Юрий ИльинСергей Матиясевич (3D Bank) о рынке трёхмерных моделей Автор: Юрий ИльинВ. Репин (ИХБФМ СО РАН) о бактерии из вечной мерзлоты Автор: Алла АршиноваДмитрий Завалишин об операционной системе «Фантом» Автор: Андрей ПисьменныйБлогиАнатолий Вассерман: «Марс-500» Автор: Анатолий ВассерманКак большой оператор споткнулся о маленького SaaS-провайдера Автор: Анисимов КонстантинАнатолий Вассерман: Дальневосточные «партизаны» Автор: Анатолий ВассерманГолубятня-ОнлайнГолубятня: Сидр №4 Автор: Сергей ГолубицкийГолубятня: Бедность Автор: Сергей Голубицкий

Журнал «Компьютерра»

Зарубежная компьютерная, околокомпьютерная литература