В этих кадрах с DVS-камеры белые точки — импульсы от «включенных» каналов, а черные — от «выключенных». Серый цвет указывает на отсутствие импульсов. На изображении в левом верхнем углу можно увидеть два лица, так как они немного перемещались в течение 26 мс. В правом верхнем углу, где изображен процесс жонглирования, точки на момент входа обозначены серым цветом с разным уровнем яркости, чтобы вы могли видеть траекторию. Диск в левом нижнем углу вращается со скоростью 200 оборотов в секунду. В средней панели траектория представляет собой спираль, движущуюся вверх. В кратком 300-микросекундном срезе спирали есть только 80 импульсов, и легко рассчитать скорость, измерив смещения черных и белых импульсов и поделив на временной интервал. Обратите внимание, что цифровая камера с длительностью кадра 26 мс не сможет следить за пятном, вращающимся с частотой 200 Гц, потому что период вращения составляет 5 мс, и на каждом кадре получится кольцо. Единственное, что остается на выходе из камеры — поток импульсов, как и в сетчатке. Это эффективный способ представления изображения, так как большинство пикселей молчат основную часть времени и каждый импульс несет полезную информацию.
Способ подключить несколько аналоговых СБИС — использовать импульсы, как и реализовано в мозге. Более половины коры — белое вещество, которое состоит из нейронных отростков дальнего действия. Провода довольно дороги, и было бы невозможно подключить чип сетчатки к чипу коры головного мозга миллионом проводов. К счастью, быстрая цифровая логика может одновременно передавать несколько потоков по одному проводу, позволяя множеству клеток сетчатки взаимодействовать со множеством клеток коры при помощи одного и того же канала. Принимающий чип получает от передающего чипа адрес каждого исходящего импульса, адрес затем декодируется, и импульс направляется к нужному элементу. Это называется предоставлением адреса событий (Address Event Representation; AER).
Тоби Дельбрюк, который сейчас работает в Институте нейроинформатики при Цюрихском университете, был аспирантом Карвера Мида (рис. 14.4)[391]
. В 2008 году он разработал весьма успешный чип сетчатки, названный датчиком динамического зрения (Dynamic Vision Sensor; DVS), что значительно упростило такие задачи, как отслеживание движущихся объектов и тщательный поиск деталей с помощью двух камер (см. рис. 14.4)[392]. Обычные цифровые камеры фиксируют последовательность кадров, которые длятся по 26 мс. В каждом кадре теряется информация: представьте диск с пятном, вращающийся со скоростью 200 оборотов в секунду; пятно будет совершать полный круг пять раз в каждом кадре и при воспроизведении записи выглядеть как статическое кольцо (блок 8). Камера Дельбрюка может отслеживать движущееся пятно с точностью до микросекунды, используя единичные импульсы, что делает ее быстрой и эффективной. Камера DVS — первая из нового класса датчиков, основанных на импульсах и их длительности. Она обладает большим потенциалом для усовершенствования многих изобретений, в том числе беспилотных автомобилей. Один из проектов на конференции в Теллурайде предлагал использовать DVS-камеры для защиты небольших футбольных ворот от попадания в них мяча (рис. 14.5).Рис. 14.5. Нейроморфный вратарь на семинаре в Теллурайде в 2013 году. Сверху: Фопефолу Фолоуоселе (слева) тестирует нейроморфного вратаря. На заднем плане можно увидеть других участников и их проекты. Внизу: DVS-камера Дельбрюка направляет деревянную лопатку для защиты ворот. Вратарь гораздо быстрее студентов и успешно защищает ворота. Я тоже сделал попытку и не смог забить (не обращайте внимания на мячи в сетке).
Рис. 14.6. Пластичность, зависящая от времени импульса. Слева: чертеж пирамидных нейронов коры, сделанный Рамоном-и-Кахалем, знаменитым испанским нейроанатомом. Выходной аксон нейрона А устанавливает синаптические связи с дендритом нейрона С (как показано стрелками). Справа: два нейрона, подобные тем, что слева, проткнули электродом и стимулировали к образованию спайков[393]
с временной задержкой между волнами. Когда входящий в нейрон импульс многократно совпадает с выходным импульсом, сила синапса (вертикальная ось) может либо увеличиваться, если предсинаптический входящий сигнал поступает до постсинаптического в пределах 20-миллисекундного окна (горизонтальная ось), либо, наоборот, уменьшаться.