Читаем Апология математики, или О математике как части духовной культуры полностью

Само слово «алгоритм» достаточно интересно: это, возможно, единственный математический термин, имеющий в своей этимологии географическое название. Таким названием служит слово «Хорезм». Великий учёный Мухаммед бен Муса аль-Хорезмби жил в конце VIII - первой половине IX века. Арабское имя «аль-Хорезми» буквально означает ‘из Хорезма’. Аль-Хорезми предложил некоторые методы решения арифметических задач, и на его авторитет ссылались средневековые европейские авторы, писавшие, как это было принято, на латыни. При этом начиная с XII века его имя транслитерировалось как «Algoritmi». Отсюда и пошёл термин «алгоритм». Поиски общего метода для решения массовой задачи велись со времён античности. Однако впервые ясное понимание алгоритма в качестве самостоятельной сущности встречается лишь в 1912 году в трудах великого французского математика Эмиля Бореля.

Понятие алгоритма - одно из центральных в математике. Программа для компьютера есть не что иное, как запись какого-то алгоритма на компьютерном языке. Прорыв в осознании этого важнейшего понятия произошёл в 1936 году, когда независимо друг от друга Алонзо Чёрч в Америке и Алан Тьюринг в Англии предложили математические уточнения понятия алгоритма (каждый своё) и на основе этих уточнений предъявили первые примеры массовых проблем, неразрешимых алгоритмически, в числе которых оказалась и очень знаменитая, стоявшая с 1915 года так называемая «das Entscheidungsproblem» («проблема разрешения»), считавшаяся главной проблемой математической логики. Поясним, что термины «проблема» и «задача» для нас синонимы и что массовая проблема считается алгоритмически неразрешимой, если не существует решающего её алгоритма, то есть такого единого алгоритма, который позволял бы находить решение для каждой из тех единичных проблем, которые и составляют рассматриваемую массовую проблему.

Алгоритмически неразрешимые проблемы, указанные Чёрчем и Тьюрингом, слишком сложны, чтобы их здесь формулировать. Сейчас мы приведём достаточно простой пример такой проблемы. Разумеется, мы вынуждены ограничиться её формулировкой и не приводить ни доказательства, ни даже намёка на доказательство её неразрешимости. Пример этот покажет, что массовые проблемы, для которых отсутствует требуемый алгоритм, лежат совсем близко к нашей повседневной жизни.

В целях большей наглядности изложим наш пример в терминах некоей игры. Любезный читатель согласится, что такая игра вполне мыслима в нашу эпоху пиара, рекламных акций, казино и игровых автоматов.

Средствами игры будут служить пластинки, наподобие тех доминошек, что используются при игре в домино. Как и в домино, каждая пластинка разделена на верхнюю и нижнюю половину. В каждой половине что-то написано. Отличие от домино в том, чтбо именно написано. В случае домино в каждой из половин записывается количество очков, от 0 до 6. А нашем случае в каждой из половин записывается какая-то цепочка из букв икс и зет. Вот примеры таких цепочек. Цепочки длины один: x, z. Цепочки длины два: xx, xz, zx, zz. Цепочки длины три: xxx, xxz, xzx, xzz, zxx, zxz, zzx, zzz. Возможна и цепочка длины ноль, в этом случае не записано ничего. А вот одна из 128 цепочек длины семь: zxzxxxz. Проиллюстрируем сказанное примерами возможных пластинок:

Перечисленные 4 пластинки, в том порядке, как они указаны, обозначим - для дальнейших ссылок - буквами A, B, C, D. Если приложить одну пластинку к другой, но не торцами, как при игре в домино, а боками, то в результате получим две строчки букв: одну сверху, другую снизу. Так, прикладывая A к D (слева D, справа A), получаем zzzx сверху и zzx снизу. Если приложить в другом порядке, получим xzzz сверху, zxz снизу. Аналогично можно прикладывать друг к другу несколько пластинок и считывать верхнюю и нижнюю строчки букв. Более того. Каждую пластинку разрешается воспроизводить в неограниченном количестве и создавать сочетания из повторяющихся пластинок - такие, например, как AACA. В этом примере верхней строчкой будет xxxzx, а нижней - zxzxzzzx. Прошу у читателя прощение за затянувшееся предварение к игре, но хотелось бы, чтобы всё было предельно ясно.

Теперь - сама игра. Она состоит в следующем. В средствах массовой информации объявляется некоторый конкретный набор пластинок. Далее предлагается, воспроизводя каждую из пластинок набора в необходимом количестве, приложить пластинки друг к другу так, чтобы верхняя и нижняя строчки иксов и зетов совпали друг с другом. Первым пяти, приславшим решения, будет выплачен внушительный приз.

Перейти на страницу:

Похожие книги