Только что приведённые соображения можно использовать для доказательства счётности множества алгебраических чисел и, следовательно, для доказательства существования трансцендентных чисел. Известно, что для всякого алгебраического уравнения множество его действительных корней, то есть таких действительных чисел, которые служат корнями этого уравнения, всегда конечно (оно может быть, в частности, и пустым). Расположим это множество в порядке возрастания, тогда каждый корень получит свой порядковый номер в этом расположении. Именем данного алгебраического числа объявим запись, состоящую из записи любого алгебраического уравнения, корнем которого данное число является (таких уравнений всегда много!), и записи порядкового номера этого корня среди всех корней этого уравнения. Общее количество всех введённых таким способом имён счётно. Отсюда легко выводятся два факта. Во-первых, оказывается счётным количество чисел, получивших имя, - а это как раз и есть алгебраические числа. Во-вторых, многие действительные числа не получат никакого имени - это и будут трансцендентные числа.
Возникает естественный вопрос, а бывают ли мощности, промежуточные между мощностями счётной и континуальной. Иначе говоря, вопрос состоит в том, какое из двух альтернативных утверждений справедливо:
(1) по количеству элементов континуум действительных чисел идёт сразу вслед за натуральным рядом или же
(2) в указанном континууме можно выделить
Гипотезу, что справедливо первое из этих утверждений, называют
На языке лингвистики то, чем мы занимались в этой главе, есть семантика количественных числительных. При этом выяснилось, что привычный бесконечный ряд “конечных” числительных: один, два, три,…, сорок восемь,…, две тысячи семь,… - может быть дополнен “бесконечным” числительным алеф-ноль -
Но ведь бывают и числительные порядковые: первый, второй, третий и т. д. Вкратце поговорим и о них. Как количественное числительное есть словесное выражение (имя)