С циркулем связана такая операция. Установив иглу циркуля в уже построенную точку, а стило в другую уже построенную точку, разрешается начертить окружность. И даже более общо: установив иглу и стило в две уже построенные точки, разрешается, не меняя раствора циркуля, перенести иглу в третью уже построенную точку и начертить окружность.
Разрешается находить пересечения друг с другом уже построенных прямых, лучей, отрезков, окружностей и дуг окружностей (но не всяких дуг, а расположенных между двумя уже построенными точками).
Наконец,
разрешается совершать так называемый
Только теперь, после описания всех разрешённых операций, обретает точный смысл утверждение о нерешимости той или иной задачи на построение, в частности задачи о квадратуре круга. Отсутствие решения означает здесь отсутствие такой цепочки разрешённых операций, которая приводила бы от круга к квадрату той же площади.
Заметим, что сам перечень разрешённых операций в значительной степени обусловлен историческими причинами и, вообще говоря, мог бы быть другим. Например, можно было бы включить в число разрешённых операций операцию построения касательной, о которой говорилось выше (заметим, кстати, что это не дало бы ничего принципиально нового, потому что касательную можно построить, подобрав подходящую цепочку разрешённых операций из старого перечня). Можно было бы включить в число разрешённых операций вычерчивание эллипса - ведь устройство для вычерчивания эллипса лишь немногим сложнее циркуля (достаточно вбить два гвоздя в фокусы эллипса и протянуть между ними нить, более длинную, нежели расстояние между фокусами; зацепим нить стилом и натянем; тогда, перемещая стило так, чтобы нить оставалась натянутой, получим эллипс). Да даже и не надо заботиться о лёгкости выполнения разрешённой операции: строго говоря, мы вправе объявить разрешённой любую операцию по нашему усмотрению. Перечень разрешённых операций, с чисто логической точки зрения, достаточно произволен. Однако, коль скоро он выбран, он уже не меняется. Полезная аналогия: свод юридических актов. С чисто логической, опять же, точки зрения, законы произвольно устанавливаются законодателем, но, будучи принятыми, они уже - хотя бы на определённый период - не меняются; во всяком случае, так должно быть.
Объясним теперь, почему задачам на построение было уделено здесь такое внимание. Причина в том, что на примере этих задач мы пытались продемонстрировать некоторые математические представления принципиального характера, представления, которые можно отнести к философии математики, а то и к философии вообще. Перечислим эти представления.
Во-первых,
был ещё раз проиллюстрирован тезис, что
Во-вторых, была показана необходимость уточнения того, в пределах какого класса объектов ищется решение задачи. Иногда этот класс состоит из объектов довольно простой (честнее было бы сказать: довольно привычной) природы - троек чисел в проблеме Ферма, отрезков в проблеме соизмеримости, но иногда он состоит из довольно-таки специальных объектов, подобно цепочкам операций в задачах на построение.
В-третьих, уточнение, о котором только что шла речь, особенно необходимо в случае, если задача оказывается нерешимой.
В-четвёртых, представление о разрешённой операции, в его общем виде, шире сферы задач на построение. Оно существенно и для компьютерной науки (Computer Science), и для компьютерной практики, а именно для программирования. Каждый компьютер имеет свой набор разрешённых операций, а каждая компьютерная программа есть некоторая цепочка операций, выбранных из этого набора.
Именно в силу своего философского аспекта задачи на построение должны занимать достойное место в школьном курсе геометрии. Мы не имеем в виду сложных задач, требующих зачастую большой изобретательности, - такие задачи должны изучаться в специализированных математических классах. Нет, мы имеем в виду самые простые задачи вроде задачи о построении правильного треугольника или задачи о нахождении середины отрезка.
Глава 6. Массовые задачи и алгоритмы