Читаем Апология математики (сборник статей) полностью

Вот иллюстрация к сказанному. Механико-математический факультет Московского университета, 1950-е гг. Идёт научный семинар, руководимый знаменитым математиком Сергеем Львовичем Соболевым (сейчас его имя носит Институт математики Сибирского отделения РАН). До слегка задремавшего Соболева доносятся слова докладчика: «А теперь я должен ввести целый ряд обозначений». Соболев просыпается и спрашивает: «Простите, какой ряд вы называете целым?» (Для тех читателей, которые незнакомы с математическим термином «ряд», поясню, что в математике рядом называется последовательность из бесконечного числа членов, подлежащих суммированию.) В подобных случаях долг гуманитария – напомнить математику, что обычные слова имеют значения и за пределами математического жаргона.

Второй фактор заключается в том, что математический смысл слова, заимствованного из естественного языка, может быть близок к обычному смыслу этого слова, но не совпадать с этим обычным смыслом. Так, математическое значение слова «угол» происходит от его обыденного значения, однако эти значения не совпадают даже в простейшем случае угла между двумя прямыми линиями (не говоря уже об угле комнаты): обыденное сознание вряд ли примирится с углом ноль градусов. В подобных случаях выбор правильного значения может оказаться затруднительным. Второй фактор глубже первого и предопределяется, по-видимому, тем, что занятия математикой и сопряжённое с ними систематическое использование точной терминологии накладывают свой отпечаток на психологию, по крайней мере в части восприятия слов. Этот фактор и проявился в нашем примере со словом «неподалёку».

Пожалуй, существует и третий фактор, не упомянутый нами по той причине, что он, возможно, обнаруживается лишь в отношении одного (но очень важного) слова. Фактор этот сводится к тому, что для обозначения одного важнейшего – и важнейшего не только для математики! – понятия в русском языке отсутствует нужное слово. В математике понятие, о котором идёт речь, обозначается словом «ложь».

Слово «ложь» происходит от глагола «лгать», каковой факт отражается в его словарном толковании: «неправда, намеренное искажение истины». Подчеркнём здесь слово «намеренное». Знаменитый «Энциклопедический словарь» Брокгауза и Ефрона в одноименной статье прямо указывает на аморальность лжи:

Ложь – в отличие от заблуждения и ошибки – обозначает сознательное и потому нравственно предосудительное противоречие истине. Из прилагательных от этого слова безусловно дурное значение сохраняет лишь форма лживый, тогда как ложный употребляется также в смысле объективного несовпадения данного положения с истиною, хотя бы без намерения и вины субъекта; так, лживый вывод есть тот, который делается с намерением обмануть других, тогда как ложным выводом может быть и такой, который делается по ошибке, вводя в обман самого ошибающегося.

Мы видим, что значение русского существительного «ложь» непременно подразумевает субъекта и его злонамеренность. Но субъект со своими намерениями чужд математике.

Вместе с тем в математике ощущается острая потребность в слове, обозначающем любое неистинное утверждение. В качестве такового и выбрано слово «ложь». Таким образом, математики употребляют это слово, лишая его какой-либо нравственной оценки и отрывая от слова «лгать». Заметим, что английский язык располагает двумя словами для перевода русского слова «ложь»: это lie для передачи обычного, общеупотребительного, бытового его смысла, предполагающего сознательную злонамеренность, и falsehood для смысла математического. Заметим также, что в русском языке существует слово, обозначающее любое истинное утверждение, вне зависимости от намерений, с которыми данное утверждение сделано. Это слово «истина». Можно сказать: «Дважды два четыре – это истина» – и при этом не иметь в виду никого, кто бы собирался кого-либо просветить. Но в математике можно сказать: «Дважды два пять – это ложь», не имея в виду никого, кто бы стремился кого-либо обмануть. (Вот тема для интересующихся философией языка: истина в русском языке объективна, а ложь – субъективна.)

VIII
Перейти на страницу:

Похожие книги