Читаем Апология математики (сборник статей) полностью

Способность к усилию, о котором только что говорилось, вырабатывается (во всяком случае должна вырабатываться) на уроках математики и при общении с математиками. Дело в том, что математика – наука по природе своей демократическая. На её уроках воспитывается (а при косвенном воздействии – прививается) демократизм.

Внешние формы такого демократизма произвели большое впечатление на автора этих строк в его первые студенческие годы, когда в конце 1940-х гг. он стал обучаться на знаменитом мехмате – механико-математическом факультете Московского университета. Если почтенный академик обнаруживал, что выступающий вслед за ним студент собирается стереть с доски им, академиком, написанное, он с извинениями вскакивал с места и стирал с доски сам. Для профессора мехмата было естественно самому написать и вывесить объявление, но не для профессора гуманитарного факультета.

Эти внешние проявления косвенно отражают глубинные различия. Ведь математическая истина не зависит от того, кто её произносит – академик или школьник. При этом академик может оказаться неправ, а школьник – прав.

Реакция Колмогорова на третьекурсника, опровергнувшего его на лекции, была такова: он пригласил студента к себе на дачу, там покатался с ним на лыжах, накормил обедом и взял себе в ученики.

С горечью приходится признать, что подобный демократизм имеет свои издержки, на что указывает Андрей Анатольевич Зализняк:

Мне хотелось бы высказаться в защиту двух простейших идей, которые прежде считались очевидными и даже просто банальными, а теперь звучат очень немодно.

1. Истина существует, и целью науки является её поиск.

2. В любом обсуждаемом вопросе профессионал (если он действительно профессионал, а не просто носитель казённых титулов) в нормальном случае более прав, чем дилетант.

Им противостоят положения, ныне гораздо более модные:

1. Истины не существует, существует лишь множество мнений (или, говоря языком постмодернизма, множество текстов).

2. По любому вопросу ничьё мнение не весит больше, чем мнение кого-то иного. Девочка-пятиклассница имеет мнение, что Дарвин неправ, и хороший тон состоит в том, чтобы подавать этот факт как серьёзный вызов биологической науке[19].

Чем наука дальше от математики, чем она, так сказать, гуманитарнее, тем сильнее убедительность того или иного высказывания начинает зависеть от авторитета высказывающего лица. На гуманитарных факультетах подобная персонализация истины ещё недавно ощущалась довольно сильно. «Это верно, потому что сказано имяреком» или даже «Это верно, потому что сказано мною» – такие категорические заявления, высказанные в явной или чаще неявной форме, не столь уж редки в гуманитарных науках. (И имярек в первой фразе, и первое лицо во второй фразе обычно относились как раз к одному из тех «носителей казённых титулов», о которых говорит Зализняк.)

В естественных науках и в математике подобные заявления невозможны. Впрочем, в тоталитарном обществе принцип верховенства мнения того, кто на должность авторитета назначен властью, применялся с печальными последствиями и к естественным наукам – достаточно вспомнить лысенковщину. Проживи Сталин дольше, возможно, изменению подверглась бы и таблица умножения. Предпринимались же попытки отменить теорию относительности.

Нет в математике и «царского пути». Здесь я ссылаюсь на известную историю, то ли подлинную, то ли вымышленную, которую одни рассказывают про великого математика Архимеда и сиракузского царя Гиерона, другие про великого математика Евклида и египетского царя Птолемея.

Царь изъявил желание изучить геометрию и обратился с этой целью к математику. Математик взялся его обучать. Царь выразил недовольство тем, что его учат совершенно так же, в той же последовательности, как и всех других, не принимая во внимание его царский статус, каковой особый статус, по мнению царя, предполагал и особый способ обучения. На что математик, по преданию, ответил: «Нет царского пути в геометрии».

Эпилог
Перейти на страницу:

Похожие книги