Читаем Апология математики (сборник статей) полностью

Теория множеств дала универсальную систему понятий, которая охватила все существовавшие к тому времени математические теории. Вместе с тем при дальнейшем развитии теории множеств появились существенные трудности, не преодолённые полностью до сих пор. Исследования последних лет дают основания считать, что созданная Кантором «наивная теория множеств» описывает на самом деле не одну, а сразу несколько теоретико-множественных моделей, так что факты, верные в одной модели, могут быть неверны в другой[4]. Если это так (а по-видимому, это действительно так), то «наивная теория множеств» расщепится на несколько моделей, подобно тому как основанная на непосредственных пространственных представлениях «наглядная» геометрия расщепилась в XIX в. на евклидову и неевклидовы. Подобное расщепление моделей происходит, пожалуй, всё же реже, чем обратный процесс, приводящий к возникновению на основе нескольких моделей одной обобщающей сверхмодели; именно так, путём отвлечения от частностей, возникают алгебраические понятия кольца, поля, группы, структуры и даже поглощающее их все понятие универсальной алгебры.

Мы видим, что модель Кантора оказывается недостаточно чёткой, а ведь выше говорилось именно о достаточной чёткости как о характерной черте математических моделей. Дело в том, что само понятие достаточной чёткости не абсолютно, а исторически обусловлено. Определения, открывающие собой евклидовы «Начала»: «Точка есть то, что не имеет частей», «Линия же – длина без ширины» и т. д., казались, вероятно, достаточно чёткими современникам Евклида (III в. до н. э.), а непреложность его системы в целом не подвергалась публичным сомнениям вплоть до 11 (23) февраля 1826 г., когда Н. И. Лобачевский сделал сообщение в отделении физико-математических наук Казанского университета. Зато именно сомнения в этой непреложности и привели в конечном счёте к современной (достаточно чёткой на сегодняшний день) формулировке евклидовой системы геометрии.

Итак, действительное значение математической строгости не следует преувеличивать и доводить до абсурда; здравый смысл в математике не менее уместен, чем во всякой другой науке. Более того, во все времена крупные математические идеи опережали господствующие стандарты строгости. Так было с великим открытием XVII в. – созданием основ анализа бесконечно малых (т. е. основ дифференциального и интегрального исчисления) Ньютоном и Лейбницем. Введённое ими в обиход понятие бесконечно малой определялось весьма туманно и казалось загадочным современникам (в том числе, по-видимому, и самим его авторам). Тем не менее оно с успехом использовалось в математике. Разработанный Ньютоном и Лейбницем символический язык не имел точной семантики (которая в удовлетворяющей нас сейчас форме была найдена лишь через полтораста лет), но даже и в таком виде позволял описывать и исследовать важнейшие явления действительности. Так было и с такими фундаментальными понятиями математики, как предел, вероятность, алгоритм, которыми пользовались, не дожидаясь их уточнения. Так обстоит дело и с «самым главным» понятием математики – понятием доказательства. «Со времён греков говорить "математика" – значит говорить "доказательство"» – этими словами открывается знаменитый трактат Николя Бурбаки «Начала математики»[5]. Однако читатель заметит, что знакомое ему ещё со школы понятие доказательства носит скорее психологический, чем математический характер. Доказательство (в общепринятом употреблении этого слова) – это всего лишь рассуждение, которое должно убедить нас настолько, что мы сами готовы убеждать с его помощью других. Несомненно, что уточнение этого понятия (во всей полноте его объёма) – одна из важнейших задач математики.

Трудовые будни математики по необходимости состоят в получении новых теорем, открывающих новые связи между известными понятиями (хотя и теперь ещё приходится слышать – правда, всё реже – удивлённое: «Как? Неужели ещё не всё открыто в этой вашей математике?»). Однако к этому математика отнюдь не сводится. Вот какие цели математического исследования считает важными великий математик А. Н. Колмогоров:

1. Привести общие логические основы современной математики в такое состояние, чтобы их можно было излагать в школе подросткам 14–15 лет.

2. Уничтожить расхождение между «строгими» методами чистых математиков и «нестрогими» приёмами математических рассуждений, применяемых прикладными математиками, физиками и техниками.

Перейти на страницу:

Похожие книги